
Reinforcement Learning via Auxiliary Task Distillation

Consider the task of using a robot to rearrange an object in the house

• Fetch-Robot with 10-DOF and a suction gripper

• Requires diverse skills like Navigating, Opening a cabinet, Picking up, and Placing

Can long-horizon robot control be learnt end-to-end without using demonstrations or 

a curriculum?
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Yes, by using Auxiliary Tasks!

• Auxiliary tasks carry relevant behaviors which are easier to learn and transferred to the main task

• They are learnt simultaneously along with the main task
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Results

Outperforms a variety of end-to-end and hierarchical baselines by 2.3x

Easy: Episodes in which the object is placed in an open receptacle 

Hard: Object is placed inside a closed receptacle  
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• M3 (+24%) ➔ Hierarchical RL with STRIPS planner 

with Navigate, Pick and Place skills 

• Mono (+73%) ➔ end to end RL which directly maps 

observations to actions  

• GALA (+24%): Scaling end to end RL with kinematic 

simulation (2B samples: x4 more than Aux-Distill) 

• ST (+25%)➔ Transformer architecture for 

rearrangement using demonstrations 

+49%
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