DCDM: Diffusion-Conditioned-Diffusion Model for STISR

Shrey Singh¹, Prateek Keserwani¹, Masakazu Iwamura² and Partha Pratim Roy¹

¹ Indian Institute of Technology Roorkee, India

² Osaka Metropolitan University, Japan

Motivation

• Challenges in Scene Text Super-Resolution (STISR): Severe blurring in scene text images causes loss of essential strokes and textual information, significantly hindering readability and recognizability.

• Existing Methods Limitations: Traditional methods rely on deterministic CNNs or integrate recognizers into the SR process, leading to suboptimal performance in handling severe blur and text clarity issues.

• **Goal:** To enhance the resolution and legibility of low-resolution scene text images, ensuring the output aligns with the distribution of pre-trained text recognizers without needing retraining on a new distribution.

(c) Diffusion-conditioned-diffusion (Proposed method)

Contributions

• Introduction of Diffusion-Conditioned-Diffusion Model (DCDM):

- A novel generative model for STISR that combines two diffusion models:
- * Latent text diffusion module for generating character-level text embeddings.
- * Image diffusion module for super-resolution.

• Character-Level CLIP (CL-CLIP) Integration:

– Aligns high-resolution character-level text embeddings with low-resolution embeddings, ensuring visual coherence and improved text fidelity.

• Two-Stage Conditioning Approach:

- Conditioning the model on both the low-resolution image and character-level text embeddings from the latent diffusion model, enabling accurate text recovery.

• Extensive Evaluation:

– Achieved superior performance over state-of-the-art methods on TextZoom and Real-CE datasets, demonstrating the effectiveness of the proposed method in text recognition and image quality enhancement.

Proposed Method

• Character-Level CLIP (CL-CLIP):

– Aligns the visual features of high-resolution text with their corresponding character-level semantics, ensuring that the super-resolved images are both visually accurate and textually meaningful.

• Latent Text Diffusion Model (LTD):

– Captures text-specific embeddings from low-resolution images and refines them through a denoising process.

– Uses cross-attention to effectively align and integrate text and image data for higher-quality text representations.

• Image Diffusion Model (IDM):

– Enhances low-resolution images to produce high-resolution outputs, conditioned on both image and text priors.

– Utilizes a stepwise denoising process through the Image Denoising UNet (IDUnet) to iteratively refine images.

• Hybrid Conditioning:

- Combines low-resolution image data and text embeddings to guide the model, enabling the generation of clearer and more accurate scene text.

Proposed Method

• **Objective Function:** – The model minimizes the error between predicted and true noise during the diffusion process, formulated as:

$$\mathscr{L}_{I^{\mathrm{LR}} \to I^{\mathrm{HR}}} = \mathbb{E}_{I^{\mathrm{HR}}, I^{\mathrm{LR}}, C, \varepsilon \sim \mathcal{N}(0, 1), t} \left[\left| \varepsilon - \varepsilon_{\theta} (I_{t}^{\mathrm{HR}}, I^{\mathrm{LR}}, C, t) \right|_{2}^{2} \right]$$

• Proposed Method Architecture DCDM

Experimental Results

• Quantitative Results on Textzoom Dataset (Accuracy) • PSNR/SSMI Results on Textzoom

Category	Method	Accuracy of CRNN				Accuracy of MORAN			Accuracy of ASTER			ER	Catogony	Mathad	Mothod PSNR			SSMI ($\times 10^{-2}$)					
		Easy	Medium	Hard	Avg.	Easy	Medium	Hard	Avg.	Easy	Medium	Hard	Avg.	Category	Method	Easy	Medium	Hard	Avg.	Easy	Medium	Hard	Avg.
Baseline	BICUBIC	36.4%	21.1%	21.1%	26.8%	60.6%	37.9%	30.8%	44.1%	67.4%	42.4%	31.2%	48.2%	Baseline	BICUBIC (LR)↑	22.35	18.98	19.39	20.35	78.84	62.54	65.92	69.61
Generic	SRCNN	41.1%	22.3%	22.0%	29.2%	63.9%	40.0%	29.4%	45.6%	70.6%	44.0%	31.5%	50.0%	Generic	SRCNN	23.48	19.06	19.34	20.78	83.79	63.23	67.91	72.27
image	SRResNet	45.2%	32.6%	25.5%	35.1%	66.0%	47.1%	33.4%	49.9%	69.4%	50.5%	35.7%	53.0%	image	SRResNet	24.36	18.88	19.29	21.03	86.81	64.06	69.11	74.03
super-	RCAN	46.8%	27.9%	26.5%	34.5%	63.1%	42.9%	33.6%	47.5%	67.3%	46.6%	35.1%	50.7%		HAN	23.30	19.02	20.16	20.95	86.91	65.37	73.87	75.96
resolution	SAN	50.1%	31.2%	28.1%	37.2%	65.6%	44.4%	35.2%	49.4%	68.1%	48.7%	36.2%	52.0%	Text-	TSRN	25.07	18.86	19.71	19.70	88.97	66.76	73.02	71.57
	HAN	51.6%	35.8%	29.0%	39.6%	67.4%	48.5%	35.4%	51.5%	71.1%	52.8%	39.0%	55.3%	based	TBSRN	23.46	19.17	19.68	19.10	87.29	64.55	74.52	70.66
Text-based	TSRN	52.5%	38.2%	31.4%	41.4%	70.1%	55.3%	37.9%	55.4%	75.1%	56.3%	40.1%	58.3%	backbone	PCAN	24.57	19.14	20.26	21.49	88.30	67.81	74.75	77.52
backbone	TBSRN	59.6%	47.1%	35.3%	48.1%	74.1%	57.0%	40.8%	58.4%	75.7%	59.9%	41.6%	60.0%	Stroke-	TG	-	-	-	21.40	-	-	-	74.56
	PCAN	59.6%	45.4%	34.8%	47.4%	73.7%	57.6%	41.0%	58.5%	77.5%	60.7%	43.1%	61.5%	aware									
Stroke-aware	TG	61.2%	47.6%	35.5%	48.9%	75.8%	57.8%	41.4%	59.4%	77.9%	60.2%	42.4%	61.3%	Text-prior	TPGSR	24.35	18.73	19.93	19.79	88.60	67.84	75.07	72.93
Text-prior	TPGSR	63.1%	52.0%	38.6%	51.8%	74.9%	60.5%	44.1%	60.5%	78.9%	62.7%	44.5%	62.8%	F	TATT	24.72	19.02	20.31	21.52	90.06	69.11	77.03	79.30
	TATT	62.6%	53.4%	39.8%	52.6%	72.5%	60.2%	43.1%	59.5%	78.9%	63.4%	45.4%	63.6%		C3-STISR	-		-	21.51	-	-	-	77.21
	C3-STISR	65.2%	53.6%	39.8%	53.7%	74.2%	61.0%	43.2%	60.5%	79.1%	63.3%	46.8%	64.1%	Diffusion +	00.011010								
Diffusion +	TCDM	67.3%	57.3%	42.7%	55.7%	77.6%	62.9%	45.9%	62.2%	81.3%	65.1%	50.1%	65.5%	Text-prior +	TCDM	_	_	_	22.83	_	_	-	79.58
DCDM	Proposed	65.7%	57.3%	41.4%	55.5%	78.4%	63.5%	45.3%	63.4%	81.8%	65.1%	47.4%	65.8%	Synthesized	1 CDM				<u>00</u>				10.00
Ground truth	BICUBIC (HR) \downarrow	76.4%	75.1%	64.6%	72.4%	91.2%	85.3%	74.2%	84.1%	94.2%	87.7%	76.2%	86.6%	DCDM	Proposed	26.47	20.29	21.25	22.87	90.80	68.73	77.34	79.54

• Quantitative Results on Real-CE Dataset

• Quantitative Ablation Study on Textzoom Dataset.

			×4	ł		$\times 2$							
Method	Trained	d on Tex	xtZoom	Trained	l on Re	eal-CE	Trained	d on Te	xtZoom	Trained on Real-CE			
	PSNR	SSIM	ACC	PSNR	SSIM	ACC	PSNR	\mathbf{SSIM}	ACC	PSNR	SSIM	ACC	
ΓSRN	17.47	48.53	17.96	18.11	48.50	23.16	18.73	56.76	24.71	18.99	52.33	28.54	
ΓPGSR	17.37	49.13	20.76	18.07	47.58	23.26	17.99	53.12	26.55	18.83	55.62	30.07	
TBSRN	17.59	49.19	22.46	18.33	48.26	25.27	18.41	54.56	29.05	19.01	53.66	31.81	
ГАТТ	17.43	50.10	21.00	17.96	49.04	23.30	18.24	56.67	27.55	19.06	57.72	31.27	
DCDM	18.13	50.89	22.94	18.91	50.90	25.49	18.87	56.89	29.34	19.23	58.12	31.94	
HR image	-	-	48.07	-	-	45.14	-	-	48.07	-	-	45.14	

Method	Comp.		Accu	racy of C	RNN	Accura	acy of M	ORAN	Accuracy of ASTER			
Method	TD	ID	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	
DCDM w/o text	X	1	65.2%	56.5%	41.3%	78.1%	61.7%	44.5%	80.4%	64.5%	46.7%	
DCDM	11		65.7%	57.3%	41.4%	78.4%	63.5%	45.3%	81.8%	65.1%	47.4%	
			(^0.5%)	$(\uparrow 0.8\%)$	$(\uparrow 0.1\%)$	$(\uparrow 0.3\%)$	$(\uparrow 1.8\%)$	$(\uparrow 0.8\%)$	$(\uparrow 1.4\%)$	$(\uparrow 0.6\%)$	$(\uparrow 0.7\%)$	

Experimental Results

• Qualitative Result on Textzoom

• Qualitative Results of Ablation Study

Conclusion

• Novel Approach for STISR: The proposed Diffusion-Conditioned Diffusion Model (DCDM) offers a unique method for scene text image super-resolution by incorporating two distinct diffusion modules for text and image denoising.

• **Text Prior and Conditioning:** The latent diffusion module generates text priors by mapping noise

to character embeddings, using low-resolution image encodings, and leveraging the CLIP-based character-level model (CL-CLIP).

• **Comparison to Conventional Methods:** Unlike traditional STISR approaches that rely on a text recognizer, DCDM eliminates the need for one, posing the question of whether it's necessary during inference.

• Improved Performance: Experimental results on TextZoom and Real-CE datasets showed that DCDM improves upon state-of-the-art methods quantitatively and qualitatively, with generated images maintaining high realism and fidelity.