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What is diffusion model distillation
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Requires 20~50 steps of denoising to generate a single image. 7




What is diffusion model distillation
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How can we distill a diffusion model?

Direct regression approach: Luhman et al., 2021.
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Following work:

* Consistency Distillation (ICML 2023)

* Consistency Trajectory Model (ICLR 2024)
* InstaFlow (ICLR 2024)

 UFOGen (CVPR 2024)
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s direct regression no longer not
necessary?



Re-discovery of direct regression training
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Perceptual loss is what we need

Target LPIPS QOutputs
Loss function img/sec FID CLIP-score
MSE 138.4 110.55 0.222
LPIPS 40.0 25.94 0.288

=5 Direct regression using LPIPS = Good

s Pixel-space LPIPS is expansive.

% Decoding can introduce errors in LPIPS.
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[1] LPIPS: The Unreasonable Effectiveness of Deep Features as a Perceptual Metric, Zhang et al., CVPR, 2018.



E-LatentLPIPS for efficient LPIPS

Decoding to LPIPS
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9.7X speedup achieved with E-LatentLPIPS! %




View the distillation as image-to-image translation
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In practice, paired image translation yields better results when
combined with conditional GAN |osses.
(sources = noise & prompt, target = ODE solution) %)



Pre-trained diffusion as a strong discriminator
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Multi-scale Input/output discriminator following GigaGAN.
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[2] Scaling up GANs for Text-to-Image Synthesis, Kang et al., CVPR, 2023.



Visual comparison with previous models

Stable Diffusion 1.5 GigaGAN InstaFlow-0.9B Diffusion2GAN




Visual comparison with latest work
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“A woman with bright blue eyes and curly blonde hair smiles warmly in a softly lit c



Visual comparison with latest work
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Visual comparison with latest work
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SDXL-Turbo (arXiv Nov., 2023) lefu5|onZGAN
“A bald eagle made of chocolate powder, mango, and whipped cream”



Visual comparison with latest work
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SDXL-Lightening (arXiv Feb., 2024) Diffusion2GAN 5
“A bald eagle made of chocolate powder, mango, and whipped cream” =



Thank youl!
Please visit our webpage for more details.
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