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Introduction

Diffusion models can synthesize diverse and complex data, e.g. images and videos.

Still difficult to generate high-resolution images, especially when conditioning on

intricate, domain-specific information, e.g. histopathology and satellite images.




Current Approaches — Finite-dimensional Diffusion

Conditional diffusion models in finite dimensions: e.g. Stable Diffusion-XL,
Matryoshka Diffusion, ..., can generate images at fixed resolution (1024 x 1024).

As resolution increases, computational resources scale quadratically.
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Current Approaches — Patch-based Diffusion

Splits large image generation into smaller segments and perform large image
synthesis via outpainting algorithm.

While more computationally efficient and produces realistic larger images, it falls
short of capturing long-range dependency.
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Current Approaches — Infinite-dimensional Diffusion
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Represents images as funtions in Hilbert space H , can synthesize images at
arbitrary resolution while training on fixed-size inputs.

Currentinfinite-dimensional diffusion models cannot be conditioned for
controllable image generation.
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Our Proposal: oo0-Brush

Propose a cross-attention neural operatorin function space, to incorporate external
information during image generation.

Build a conditional denoiser in function space as part of co-Brush @} | the first
conditional diffusion model in function space.

The first method to controllably synthesize images at arbitrary resolutions up to
4096 x 4096 pixels.
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Preliminaries — Notation and Data

A dataset of theform D = {(ux,ex) }1<k<p , whereeachu; € H is ani.i.d. draw

from an unknown probability measure Qgata onH , and €; is a control component
of function u; .

Itis difficult to represent the function directly, we discretize it on the mesh

x; = {x"}icicy € X, with discretized observations{uj(xgi))}lgsw being the
output of function u; atthe ¢-th observation point.



Preliminaries — Gaussian Measures on Hilbert Spaces

Let Q be a probability measure on (H, B(#H)). If Q is Gaussian, then there exists
a mean element m € H and a covariance operator C : H — H, such that

/ (0, x)Q(dx) = (m,u), Vu € %, (1)
H

/;{(ul,x —m)(uz,x —m)Q(dx) = (Cuy,us), Vui,us € H. (2)



Preliminaries — Neural Operators

A type of neural network tailored to learn mappings between infinite-dimensional
function spaces.

In diffusion models in infite dimensions, a denoiser is parameterized by a neural

operator Yo : U* — U , learnsto map from noisy function space to denoised
function space.

Include multiple operator layers vg +— Vi +— -+ — V[, wherelayer v; — V41
is built on a local linear operator, a non-local integral kernel operator and a bias
function:

vip1(x¥) = o144 (lel(x(i)) + (K (u; ¢)vi) (xD) + by (X(i)))



oo-Brush @}- Conditional Diffusion Models in Function Space

Forward process: gradually perturbs the probability measure Qo = Qqata
towards a Gaussian measure N (m, C)

Q (utlug) = N (ug; VarAug, (1 — a:) ACA™)

A smoothing operator A : ‘H — H ,e.g. atruncated Gaussian kernel, is applied
to get a smoother function representation.
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oo-Brush @}- Conditional Diffusion Models in Function Space

Reverse process: approximate posterior measures with a variational family of
measures on H and use conditional embedding € to control the generation process

Py(us_1|us,e) =N (ut_l; my(uy, e, t), ACg(ut,e,t)AT) :
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oo-Brush @}- Conditional Diffusion Models in Function Space

Proposition 1 (Learning Objective). The cross-entropy of conditional dif-
fusion models in function space has a variational upper bound of

Lcg = —EqlogPy(ugle) < Eq | KL(Q(ur|uo) || Po(ur)) —logPg(uo|u,e)
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Proof. Please refer to the Supplementary Material for the full proof. O
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oo-Brush @}- Conditional Diffusion Models in Function Space

Lemma 1 (Measure Equivalence - The Feldman-Hajek Theorem). Let
Q = N(my,Cq) and P = N(my,Cs) be Gaussian measures on H. They are

equivalent if and only if () : 01/2(7{) = C;/Z(H) = Ho, (it) : m;—ms € Hy, and
(¢ii) : The operator (C;l/zcg/z)(cl‘l/zcé/z)* — 1 is a Hilbert-Schmidt operator
on the closure Hy.

Lemma 2 (The Radon-Nikodym Derivative). Let Q = N(my,C;) and
P = N(mgy,Cs) be Gaussian measures on H. If P and Q are equivalent and
C, = Cs = C, then P-a.s. the Radon-Nikodym derivative dQ/dP is given by

B0) =0 (71 ) C ()~ IO )] € L
12

Proof. The proof of both lemmas is in the Supplementary Material. O
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oo-Brush @}- Conditional Diffusion Models in Function Space

Assumption 1 Let Q = N (my(us, up), B:C) and Py = N(mg(uy, e, t),5C)
be Gaussian measures on H. With a conditional component e, which can be
an element of finite-dimensional space R® or Hilbert space H, there ezists a

parameter set 6 such that the difference in mean elements of the two measures
falls within the scaled covariance space:

i, (uy, up) — my(uy, e,t) € (B:C)2(H). (13)

14



oo-Brush @}- Conditional Diffusion Models in Function Space

Theorem 1 (Conditional Diffusion Optimality in Function Space).
Given the specified conditions in Assumption 1, the minimization of the learning
objective in Proposition 1 is equivalent to obtaining the parameter set 0* that is
the solution to the problem

2

’H b
(14
where € ~ N(0,C), A : H — H denotes a smoothing operator, e € (REUH) is a
conditional component, & : {1,2,...,T} x (R*UH) x H — H is a parameterized
mapping, At = 52/2B:(1 — B¢)(1 — &) € R is a time-dependent constant.

6* = arg min By, g, A Hc—1/2 (A€ — & (VaAup + VI— &AL, e, t)) H
0

Proof. Please refer to the Supplementary Material for the full proof. O
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Conditional Denoiser with Cross-Attention Neural Operators

Condition embedding
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Coordinate Embedding
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The sparse level utilizes a sparse neural operator, a cross-attention neural operator, and a self-attention neural
operator, focusing on capturing fine-grained details. The grid level targets global information.
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Conditional Denoiser with Cross-Attention Neural Operators

The computational complexity of vanilla attention is quadratic O(NQd) :
We propose a cross-attention neural operator of linear complexity w.r.t. NV

Suppose we have L conditional embeddings{Y; € RN Xd}lglgL , we first compute
queries @ = (q;) , keys K; = (k!) = YWy, and values V; = (v}) = iW,

L N;

L N,
~ 1 l (~ 1.1 l ~ 1 l~ 1.1 l

Cross-Attention
Neural Operator

» © The complexity is O(N + >, Ni)d?) |
3 which is linear w.r.t. V.
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Experiments — Facial Attribute Conditional Generation
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Large images (1024 x 1024) generated from ouioo-Brush @} , conditioned on the facial attribute blonde/non-blonde hair.

Table 1: The CLIP FID scores of our co-Brush model against co-Diff showcases our
model’s capability in conditionally generating celebrity faces on the CelebA-HQ dataset
based on the facial attribute of hair color (blonde vs. non-blonde).

Dataset # Images Method | Training Config. |CLIP FID

CelebA-HQ 30k oo-Diff [2]| Unconditional | 9.44
(1024 x 1024) co-Brush |blonde vs. non-blonde hair|  8.38
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Experiments — Controllable Very Large Image Generation

Reference Synthetic Reference

Very large images (4096 x 4096) generated frono0-Brush @} , and the corresponding reference real images used to generate them.
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Experiments — Controllable Very Large Image Generation
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oo-Brush €} retains large-scale structures that can span multiple patches compared to the image generated from patch-based method.

Dataset # Images Method |’I‘raining Config. ]CLIP FID|Cr0p FID
Graikos et al. [10] 97165(2535(:1%628 40f 2.75 11.30
BRCA 1.25x% 57k
(4096 x 4096) co-Brush | 65536 pixels of | 2.63 | 14.76
oo-Brush 57k full-size images
X Cross-attention neural operator 3.81 16.28
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Experiments — Controllable Large Image Generation

Synthetic

Reference

Large images (1024 x 1024) generated fron00-Brush @} , and the corresponding reference real images used to generate them.
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Experiments — Controllable Large Image Generation

Synthetic

Reference

Synthetic Reference Synthetic Reference

Large images (2048 x 2048and 1024 x 1024) generated fronoo-Brush @} | and the corresponding reference real images used to
generate them.
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Experiments — Controllable Large Image Generation

Table 3: Performance on controllable large image synthesis on BRCA 5x and NAIP
dataset at 1024 x 1024 resolution. co-Brush outperforms other methods in global struc-
ture accuracy, with a marginal trade-off in fine detail as reflected in Crop FID.

Dataset # Images Method | Training Config. ‘CLIP FID‘Crop FID
SDXL [25]  |976k full-size images| 6.64 | 6.98
BRCA 5x . 15M patches of
(1024 x 1024) 976k  Graikos et al. [1(]]‘ 956 x 956 7.43 15.51
256 x 256 pixels of
co-Brush ‘976k full-size images 3.74 ‘ 17.87
SDXL [25] | 35k full-size images | 10.90 | 11.50
NAIP . 667k patches of
! . .
(1024 x 1024) 35k Graikos et al. | U]‘ 956 % 256 ‘ 6.86 ‘ 43.76
256 x 256 pixels of
co-Brush ‘ 35k full-size images 6.32 ‘ 48.65
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Experiments — Computing Resource Evaluation

Table 4: Computing resources requirements for different diffusion models. our
oo-Brush maintains a constant parameter count and batch size across resolutions,
highlighting its efficiency and scalability for controllable large image generation.

Method # Params.| Training at 1024 x 1024 Training at 4096 x 4096
Max batch size|Epoch time |Max batch size‘ Epoch time

1000 hr (estimated)
currently infeasible

Graikos et al. [[U]| 860M | 100 | 45hr | 4 | 300 hr
co-Brush | 450M | 20 | 12hr | 20 | 12 hr

SDXL [7] 3.5B 4 140 hr 0.0.M
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