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Introduction

◎ Diffusion models can synthesize diverse and complex data, e.g. images and videos.

◎ Still difficult to generate high-resolution images, especially when conditioning on 

intricate, domain-specific information, e.g. histopathology and satellite images.  
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Current Approaches – Finite-dimensional Diffusion
◎ Conditional diffusion models in finite dimensions: e.g. Stable Diffusion-XL, 

Matryoshka Diffusion, …, can generate images at fixed resolution (1024 × 1024).

◎ As resolution increases, computational resources scale quadratically.
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Rombach et al., “High-Resolution Image Synthesis With Latent Diffusion Models”, CVPR 2022



Current Approaches – Patch-based Diffusion
◎ Splits large image generation into smaller segments and perform large image 

synthesis via outpainting algorithm. 

◎ While more computationally efficient and produces realistic larger images, it falls 
short of capturing long-range dependency.
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Current Approaches – Infinite-dimensional Diffusion
◎ Represents images as funtions in Hilbert space ℋ , can synthesize images at 

arbitrary resolution while training on fixed-size inputs.

◎ Current infinite-dimensional diffusion models cannot be conditioned for 
controllable image generation.
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Hilbert space and examples, Wikipedia



Our Proposal: 
◎ Propose a cross-attention neural operator in function space, to incorporate external 

information during image generation.

◎ Build a conditional denoiser in function space as part of , the first 
conditional diffusion model in function space.

◎ The first method to controllably synthesize images at arbitrary resolutions up to 
4096 × 4096 pixels.
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Preliminaries – Notation and Data 

◎ A dataset of the form , where each is an i.i.d. draw 
from an unknown probability measure             on       , and        is a control component 
of function        .

◎ It is difficult to represent the function directly, we discretize it on the mesh 
, with discretized observations                                , being the 

output of function        at the            observation point. 
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Preliminaries – Gaussian Measures on Hilbert Spaces
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Preliminaries – Neural Operators

◎ A type of neural network tailored to learn mappings between infinite-dimensional 
function spaces. 

◎ In diffusion models in infite dimensions, a denoiser is parameterized by a neural 
operator , learns to map from noisy function space to denoised 
function space. 

◎ Include multiple operator layers , where layer
is built on a local linear operator, a non-local integral kernel operator and a bias 
function:   
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- Conditional Diffusion Models in Function Space

◎ Forward process: gradually perturbs the probability measure
towards a Gaussian measure  

A smoothing operator , e.g. a truncated Gaussian kernel, is applied 
to get a smoother function representation.
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- Conditional Diffusion Models in Function Space

◎ Reverse process: approximate posterior measures with a variational family of 
measures on       and use conditional embedding      to control the generation process 
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- Conditional Diffusion Models in Function Space
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- Conditional Diffusion Models in Function Space
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- Conditional Diffusion Models in Function Space
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- Conditional Diffusion Models in Function Space
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Conditional Denoiser with Cross-Attention Neural Operators
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The sparse level utilizes a sparse neural operator, a cross-attention neural operator, and a self-attention neural 
operator, focusing on capturing fine-grained details. The grid level targets global information. 



Conditional Denoiser with Cross-Attention Neural Operators

◎ The computational complexity of vanilla attention is quadratic .

◎ We propose a cross-attention neural operator of linear complexity w.r.t.

◎ Suppose we have      conditional embeddings                                              , we first compute 
queries , keys , and values          

◎

◎ The complexity is , 
which is linear w.r.t. .
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Experiments – Facial Attribute Conditional Generation
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Large images (1024 × 1024) generated from our , conditioned on the facial attribute blonde/non-blonde hair. 



Experiments – Controllable Very Large Image Generation
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Very large images (4096 × 4096) generated from , and the corresponding reference real images used to generate them. 



Experiments – Controllable Very Large Image Generation
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retains large-scale structures that can span multiple patches compared to the image generated from patch-based method.



Experiments – Controllable Large Image Generation
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Large images (1024 × 1024) generated from                                    , and the corresponding reference real images used to generate them. 



Experiments – Controllable Large Image Generation
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Large images (2048 × 2048 and 1024 × 1024) generated from                                    , and the corresponding reference real images used to 
generate them. 



Experiments – Controllable Large Image Generation
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Experiments – Computing Resource Evaluation
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Thanks!
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