• • O - Brush 🕼 : Controllable Large Image Synthesis with Diffusion Models in Infinite Dimensions

Minh-Quan Le*, Alexandros Graikos*, Srikar Yellapragada, Rajarsi Gupta, Joel Saltz, Dimitris Samaras

Introduction

- Diffusion models can synthesize diverse and complex data, e.g. images and videos.
- Still difficult to generate high-resolution images, especially when conditioning on intricate, domain-specific information, e.g. histopathology and satellite images.

Current Approaches – Finite-dimensional Diffusion

- Conditional diffusion models in finite dimensions: *e.g.* Stable Diffusion-XL,
 Matryoshka Diffusion, ..., can generate images at fixed resolution (1024 × 1024).
- As resolution increases, computational resources scale quadratically.

Rombach et al., "High-Resolution Image Synthesis With Latent Diffusion Models", CVPR 2022

Current Approaches – Patch-based Diffusion

- Splits large image generation into smaller segments and perform large image synthesis via outpainting algorithm.
- While more computationally efficient and produces realistic larger images, it falls short of capturing long-range dependency.

A. Graikos, S. Yellapragada, M.Q. Le, S. Kapse, P. Prasanna, J. Saltz, D. Samaras, "Learned representation-guided diffusion models for large-image generation", CVPR 2024

Current Approaches – Infinite-dimensional Diffusion

- Represents images as functions in Hilbert space H, can synthesize images at arbitrary resolution while training on fixed-size inputs.
- Current infinite-dimensional diffusion models cannot be conditioned for controllable image generation.

Hilbert space and examples, Wikipedia

Our Proposal: ∞ -Brush 🚳

- Propose a cross-attention neural operator in function space, to incorporate external information during image generation.
- \bigcirc Build a conditional denoiser in function space as part of ∞ -Brush (), the first conditional diffusion model in function space.
- The first method to controllably synthesize images at arbitrary resolutions up to 4096×4096 pixels.

Preliminaries – Notation and Data

- O A dataset of the form $\mathcal{D} = \{(\mathbf{u}_k, \mathbf{e}_k)\}_{1 \le k \le D}$, where each $\mathbf{u}_j \in \mathcal{H}$ is an i.i.d. draw from an unknown probability measure \mathbb{Q}_{data} on \mathcal{H} , and \mathbf{e}_j is a control component of function \mathbf{u}_j .
- O It is difficult to represent the function directly, we discretize it on the mesh $\mathbf{x}_j = \{\mathbf{x}_j^{(i)}\}_{1 \le i \le N} \subset \mathcal{X}$, with discretized observations $\{\mathbf{u}_j(\mathbf{x}_j^{(i)})\}_{1 \le i \le N}$, being the output of function \mathbf{u}_j at the *i*-th observation point.

Preliminaries – Gaussian Measures on Hilbert Spaces

Let \mathbb{Q} be a probability measure on $(\mathcal{H}, \mathcal{B}(\mathcal{H}))$. If \mathbb{Q} is Gaussian, then there exists a mean element $\mathbf{m} \in \mathcal{H}$ and a covariance operator $\mathbf{C} : \mathcal{H} \to \mathcal{H}$, such that

$$\int_{\mathcal{H}} \langle \mathbf{u}, \mathbf{x} \rangle \mathbb{Q}(\mathrm{d}\mathbf{x}) = \langle \mathbf{m}, \mathbf{u} \rangle, \quad \forall \mathbf{u} \in \mathcal{H},$$
(1)

$$\int_{\mathcal{H}} \langle \mathbf{u}_1, \mathbf{x} - \mathbf{m} \rangle \langle \mathbf{u}_2, \mathbf{x} - \mathbf{m} \rangle \mathbb{Q}(\mathrm{d}\mathbf{x}) = \langle \mathbf{C}\mathbf{u}_1, \mathbf{u}_2 \rangle, \quad \forall \mathbf{u}_1, \mathbf{u}_2 \in \mathcal{H}.$$
(2)

Preliminaries – Neural Operators

- A type of neural network tailored to learn mappings between infinite-dimensional function spaces.
- In diffusion models in infite dimensions, a denoiser is parameterized by a neural operator \mathcal{G}_{θ} : $\mathcal{U}^* \to \mathcal{U}$, learns to map from noisy function space to denoised function space.
- O Include multiple operator layers $\mathbf{v}_0 \mapsto \mathbf{v}_1 \mapsto \cdots \mapsto \mathbf{v}_L$, where layer $\mathbf{v}_l \mapsto \mathbf{v}_{l+1}$ is built on a local linear operator, a non-local integral kernel operator and a bias function:

$$\mathbf{v}_{l+1}(\mathbf{x}^{(i)}) = \sigma_{l+1} \left(W_l \mathbf{v}_l(\mathbf{x}^{(i)}) + (\mathcal{K}_l(\mathbf{u};\phi)\mathbf{v}_l)(\mathbf{x}^{(i)}) + b_l(\mathbf{x}^{(i)}) \right)$$

 ∞ -Brush \otimes - Conditional Diffusion Models in Function Space

 \bigcirc Forward process: gradually perturbs the probability measure $\mathbb{Q}_0 = \mathbb{Q}_{data}$ towards a Gaussian measure $\mathcal{N}(\mathbf{m}, \mathbf{C})$

$$\mathbb{Q}\left(\mathbf{u}_{t}|\mathbf{u}_{0}\right) = \mathcal{N}\left(\mathbf{u}_{t}; \sqrt{\bar{lpha}_{t}}\mathbf{A}\mathbf{u}_{0}, (1-\bar{lpha}_{t})\mathbf{A}\mathbf{C}\mathbf{A}^{T}\right)$$

A smoothing operator $\mathbf{A}:\mathcal{H}\to\mathcal{H}$, *e.g.* a truncated Gaussian kernel, is applied to get a smoother function representation.

∞-Brush 🏶 - Conditional Diffusion Models in Function Space

Reverse process: approximate posterior measures with a variational family of measures on \mathcal{H} and use conditional embedding \mathbf{e} to control the generation process

$$\mathbb{P}_{\theta}(\mathbf{u}_{t-1}|\mathbf{u}_t,\mathbf{e}) = \mathcal{N}\left(\mathbf{u}_{t-1};\mathbf{m}_{\theta}(\mathbf{u}_t,\mathbf{e},t),\mathbf{A}\mathbf{C}_{\theta}(\mathbf{u}_t,\mathbf{e},t)\mathbf{A}^T\right).$$

 ∞ -Brush \otimes - Conditional Diffusion Models in Function Space

Proposition 1 (Learning Objective). The cross-entropy of conditional diffusion models in function space has a variational upper bound of

$$\mathcal{L}_{CE} = -\mathbb{E}_{\mathbb{Q}} \log \mathbb{P}_{\theta}(\mathbf{u}_{0}|\mathbf{e}) \leq \mathbb{E}_{\mathbb{Q}} \left[\underbrace{\mathrm{KL}(\mathbb{Q}(\mathbf{u}_{T}|\mathbf{u}_{0}) \parallel \mathbb{P}_{\theta}(\mathbf{u}_{T}))}_{\mathcal{L}_{T}} \underbrace{-\log \mathbb{P}_{\theta}(\mathbf{u}_{0}|\mathbf{u}_{1}, \mathbf{e})}_{\mathcal{L}_{0}} + \sum_{t=2}^{T} \underbrace{\mathrm{KL}(\mathbb{Q}(\mathbf{u}_{t-1}|\mathbf{u}_{t}, \mathbf{u}_{0}) \parallel \mathbb{P}_{\theta}(\mathbf{u}_{t-1}|\mathbf{u}_{t}, \mathbf{e})}_{\mathcal{L}_{t-1}} \right].$$
(11)

Proof. Please refer to the Supplementary Material for the full proof.

∞-Brush 🕼 - Conditional Diffusion Models in Function Space

Lemma 1 (Measure Equivalence - The Feldman-Hájek Theorem). Let $\mathbb{Q} = \mathcal{N}(\mathbf{m}_1, \mathbf{C}_1)$ and $\mathbb{P} = \mathcal{N}(\mathbf{m}_2, \mathbf{C}_2)$ be Gaussian measures on \mathcal{H} . They are equivalent if and only if $(i) : \mathbf{C}_1^{1/2}(\mathcal{H}) = \mathbf{C}_2^{1/2}(\mathcal{H}) = \mathcal{H}_0$, $(ii) : \mathbf{m}_1 - \mathbf{m}_2 \in \mathcal{H}_0$, and (iii) : The operator $(\mathbf{C}_1^{-1/2}\mathbf{C}_2^{1/2})(\mathbf{C}_1^{-1/2}\mathbf{C}_2^{1/2})^* - \mathbf{I}$ is a Hilbert-Schmidt operator on the closure $\overline{\mathcal{H}_0}$.

Lemma 2 (The Radon-Nikodym Derivative). Let $\mathbb{Q} = \mathcal{N}(\mathbf{m}_1, \mathbf{C}_1)$ and $\mathbb{P} = \mathcal{N}(\mathbf{m}_2, \mathbf{C}_2)$ be Gaussian measures on \mathcal{H} . If \mathbb{P} and \mathbb{Q} are equivalent and $\mathbf{C}_1 = \mathbf{C}_2 = \mathbf{C}$, then \mathbb{P} -a.s. the Radon-Nikodym derivative $d\mathbb{Q}/d\mathbb{P}$ is given by

$$\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}(\mathbf{f}) = \exp\left[\left\langle \mathbf{C}^{-1/2}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right), \mathbf{C}^{-1/2}\left(\mathbf{f}-\mathbf{m}_{2}\right)\right\rangle - \frac{1}{2}\|\mathbf{C}^{-1/2}(\mathbf{m}_{1}-\mathbf{m}_{2})\|^{2}\right] \forall \mathbf{f} \in \mathcal{H}.$$
(12)

Proof. The proof of both lemmas is in the Supplementary Material.

Π

∞-Brush 🕼 - Conditional Diffusion Models in Function Space

Assumption 1 Let $\mathbb{Q} = \mathcal{N}(\tilde{\mathbf{m}}_t(\mathbf{u}_t, \mathbf{u}_0), \tilde{\beta}_t \mathbf{C})$ and $\mathbb{P}_{\theta} = \mathcal{N}(\mathbf{m}_{\theta}(\mathbf{u}_t, \mathbf{e}, t), \tilde{\beta}_t \mathbf{C})$ be Gaussian measures on \mathcal{H} . With a conditional component \mathbf{e} , which can be an element of finite-dimensional space \mathbb{R}^d or Hilbert space \mathcal{H} , there exists a parameter set θ such that the difference in mean elements of the two measures falls within the scaled covariance space:

$$\tilde{\mathbf{m}}_t(\mathbf{u}_t, \mathbf{u}_0) - \mathbf{m}_{\theta}(\mathbf{u}_t, \mathbf{e}, t) \in (\tilde{\beta}_t \mathbf{C})^{1/2}(\mathcal{H}).$$
(13)

∞-Brush 🕼 - Conditional Diffusion Models in Function Space

Theorem 1 (Conditional Diffusion Optimality in Function Space). Given the specified conditions in Assumption 1, the minimization of the learning objective in Proposition 1 is equivalent to obtaining the parameter set θ^* that is the solution to the problem

$$\begin{aligned} \theta^* &= \arg\min_{\theta} \mathbb{E}_{\mathbf{u}_0 \sim \mathbb{Q}_{\text{data}}} \lambda_t \left\| \left| \mathbf{C}^{-1/2} \left(\mathbf{A}\boldsymbol{\xi} - \boldsymbol{\xi}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{A} \mathbf{u}_0 + \sqrt{1 - \bar{\alpha}_t} \mathbf{A}\boldsymbol{\xi}, \mathbf{e}, t) \right) \right\|_{\mathcal{H}}^2, \end{aligned}$$

$$(14)$$
where $\boldsymbol{\xi} \sim \mathcal{N}(0, \mathbf{C}), \ \mathbf{A} : \mathcal{H} \to \mathcal{H} \text{ denotes a smoothing operator, } \mathbf{e} \in (\mathbb{R}^d \cup \mathcal{H}) \text{ is a conditional component, } \boldsymbol{\xi}_{\theta} : \{1, 2, \dots, T\} \times (\mathbb{R}^d \cup \mathcal{H}) \times \mathcal{H} \to \mathcal{H} \text{ is a parameterized mapping, } \lambda_t = \beta_t^2 / 2\tilde{\beta}_t (1 - \beta_t)(1 - \bar{\alpha}_t) \in \mathbb{R} \text{ is a time-dependent constant.} \end{aligned}$

Proof. Please refer to the Supplementary Material for the full proof.

Conditional Denoiser with Cross-Attention Neural Operators

The sparse level utilizes a sparse neural operator, a cross-attention neural operator, and a self-attention neural operator, focusing on capturing fine-grained details. The grid level targets global information.

Conditional Denoiser with Cross-Attention Neural Operators

- ${\mathbb D}$ $\,$ The computational complexity of vanilla attention is quadratic ${\mathcal O}(N^2 d)$.
- ${\mathbb D}$ ${\mathbb D}$ We propose a cross-attention neural operator of linear complexity w.r.t. N
- Suppose we have L conditional embeddings $\{Y_l \in \mathbb{R}^{N_l \times d}\}_{1 \leq l \leq L}$, we first compute queries $Q = (\mathbf{q}_i)$, keys $K_l = (\mathbf{k}_i^l) = Y_l W_k$, and values $V_l = (\mathbf{v}_i^l) = Y_l W_v$

Experiments – Facial Attribute Conditional Generation

Large images (1024 \times 1024) generated from ou ∞ – Brush \Im , conditioned on the facial attribute blonde/non-blonde hair.

Table 1: The CLIP FID scores of our ∞ -Brush model against ∞ -Diff showcases our model's capability in conditionally generating celebrity faces on the CelebA-HQ dataset based on the facial attribute of hair color (blonde vs. non-blonde).

Dataset	# Images	Method	Training Config.	CLIP FID
$\begin{array}{c} \text{CelebA-HQ} \\ (1024 \times 1024) \end{array}$	30k	∞ -Diff [2]	Unconditional	9.44
		∞ -Brush	8.38	

Experiments – Controllable Very Large Image Generation

Very large images (4096 \times 4096) generated from ∞ – Brush \Im , and the corresponding reference real images used to generate them.

Experiments – Controllable Very Large Image Generation

∞-Brush 🕼 retains large-scale structures that can span multiple patches compared to the image generated from patch-based method.

Dataset	# Images	Method	Training Config.	CLIP FID	Crop FID
BRCA $1.25 \times (4096 \times 4096)$		Graikos et al. [10]	976k patches of 1024×1024	2.75	11.30
	57k	$\infty ext{-Brush}$	65536 pixels of	2.63	14.76
		∞ -Brush X Cross-attention neural operator	57k full-size images	3.81	16.28

Experiments – Controllable Large Image Generation

Large images (1024×1024) generated from ∞ – Brush \Im , and the corresponding reference real images used to generate them.

Experiments – Controllable Large Image Generation

Large images (2048 \times 2048 and 1024 \times 1024) generated from ∞ – Brush \circledast , and the corresponding reference real images used to generate them.

Experiments – Controllable Large Image Generation

Table 3: Performance on controllable large image synthesis on BRCA $5 \times$ and NAIP dataset at 1024×1024 resolution. ∞ -Brush outperforms other methods in global structure accuracy, with a marginal trade-off in fine detail as reflected in Crop FID.

Dataset	# Images	Method	Training Config.	CLIP FID	Crop FID
	976k	SDXL [25]	976k full-size images	6.64	6.98
BRCA $5 \times$ (1024 × 1024)		Graikos et al. [10]	$\begin{array}{c} 15 \mathrm{M} \ \mathrm{patches} \ \mathrm{of} \\ 256 \times 256 \end{array}$	7.43	15.51
		$\infty ext{-Brush}$	256×256 pixels of 976k full-size images	3.74	17.87
$\begin{array}{c} \text{NAIP} \\ (1024 \times 1024) \end{array}$	35k	SDXL [25]	L [25] 35k full-size images		11.50
		Graikos et al. [10]	$\begin{array}{c} 667 \mathrm{k} \text{ patches of} \\ 256 \times 256 \end{array}$	6.86	43.76
		$\infty ext{-Brush}$	256×256 pixels of 35k full-size images	6.32	48.65

Experiments – Computing Resource Evaluation

Table 4: Computing resources requirements for different diffusion models. our ∞ -Brush maintains a constant parameter count and batch size across resolutions, highlighting its efficiency and scalability for controllable large image generation.

Method	# Params.	Training at 1 Max batch size	024×1024 e Epoch time	Training a Max batch size	$\begin{array}{c} \text{at } 4096 \times 4096 \\ \text{Epoch time} \end{array}$
SDXL [25]	3.5B	4	140 hr	O.O.M	1000 hr (estimated) currently infeasible
Graikos et al. [10]	860M	100	45 hr	4	300 hr
∞ -Brush	450M	20	12 hr	20	12 hr

Thanks!

