

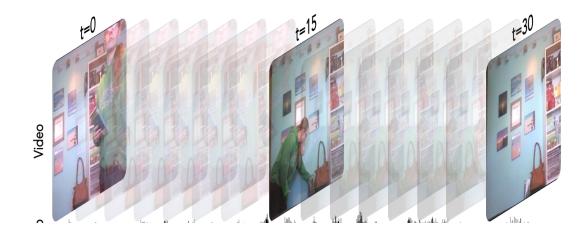
MST_{MIXER} : Multi-Modal Video Dialog State Tracking in the Wild

Adnen Abdessaied, Lei Shi, Andreas Bulling

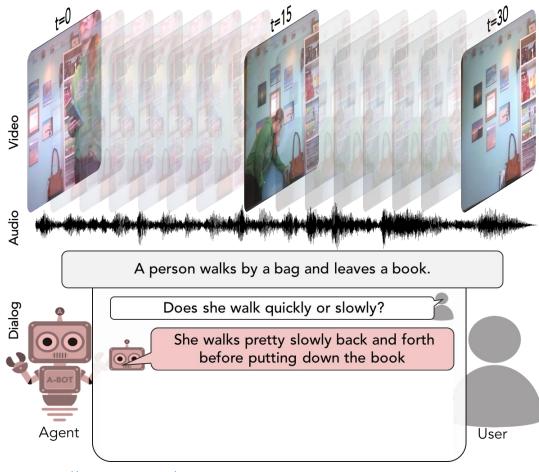
University of Stuttgart, Germany

adnen.abdessaied@vis.uni-stuttgart.de

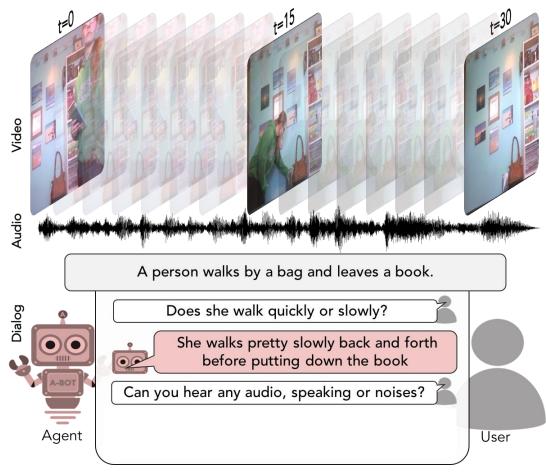
European Conference on Computer Vision (ECCV) Milano, Italy



Video Dialog - Task formulation


Video Dialog - Task formulation Given a video,

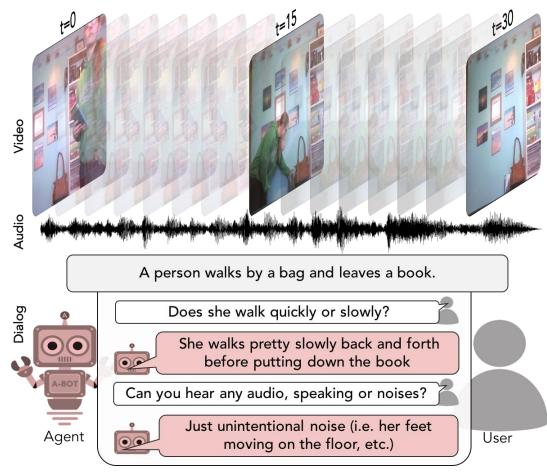
Video Dialog - Task formulation Given a video, audio data,



Video Dialog - Task formulation Given a video, audio data, a dialog history,

From <u>https://video-dialog.com/</u>

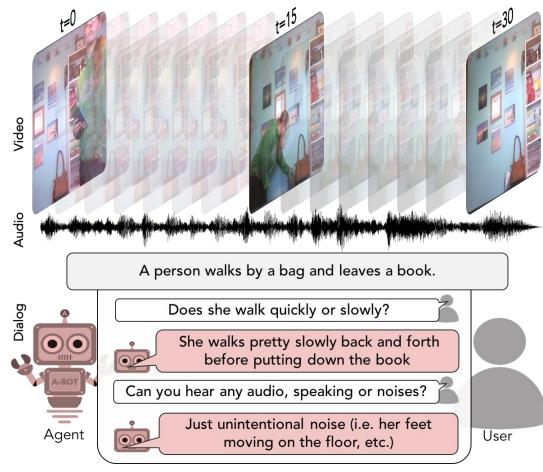
University of Stuttgart Germany



Given a video, audio data, a dialog history, and a question at time step *t*,

From <u>https://video-dialog.com/</u>

University of Stuttgart Germany


Video Dialog - Task formulation

From <u>https://video-dialog.com/</u>

Video Dialog - Task formulation

Given a video, audio data, a dialog history, and a question at time step *t*, generate an appropriate answer auto-regressively

From https://video-dialog.com/

Video Dialog - Task formulation

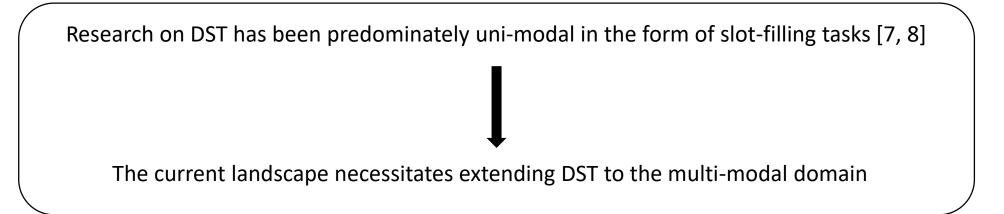
Given a video, audio data, a dialog history, and a question at time step *t*, generate an appropriate answer auto-regressively

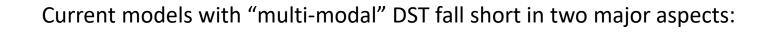
Video Dialog is a natural extension to visual dialog

- Video vs image
- Complements videos with audio data

Motivation

Motivation


Video Dialog [1] is a highly multi-modal task \rightarrow More challenging than similar tasks


- VQA [2] & VideoQA [3]: Reasoning about the dialog history in addition to the question
- Visual Dialog [4]: Reasoning about a dynamic scene instead of a static image

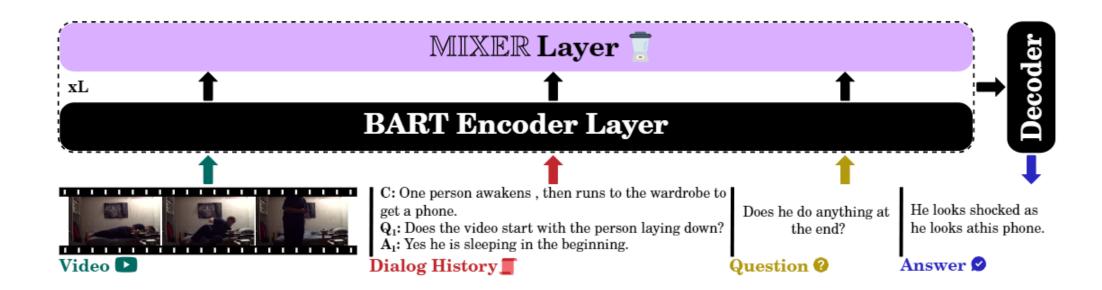
Dialog State Tracking (DST) is crucial in building capable models

- **DST** was originally introduced to track and update users' goals in form of dialog states [5, 6]
- Now, it is broadly used to describe a model that keeps track of what it believes to be relevant for answering the question at hand

Motivation

- track the constituent of only one modality within a multi-modal task [9, 10]
 uni-modal DST
 - limited to synthetic and automatically-generated datasets [11, 12, 13]
 → do not reflect the complexity of real world scenarios

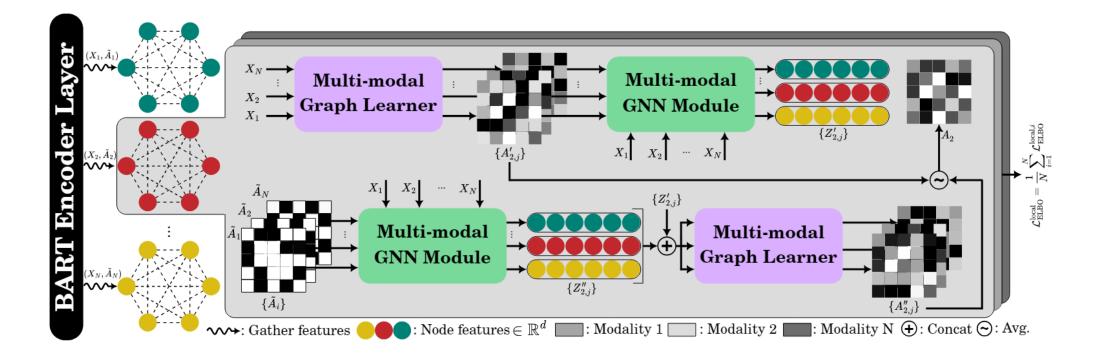
MST_{MIXER} addresses the aforementioned limitations with


- ✓ modality-specific tracking blocks to identify the most relevant constituents of each modality
- ✓ a multi-modal GNN approach to learn the underlying structure between the mix of modalities

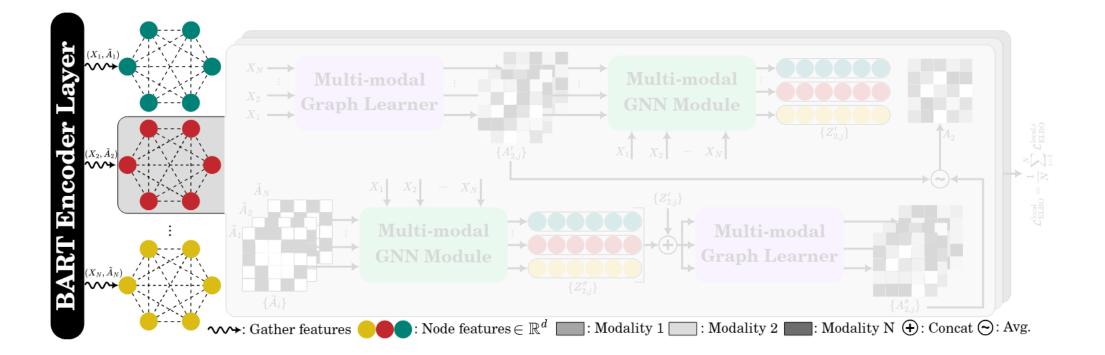
✓ Performs multi-modal state tracking in the real sense of the word
 ✓ Can tackle a wide-range of real-world datasets and benchmarks

Main Idea

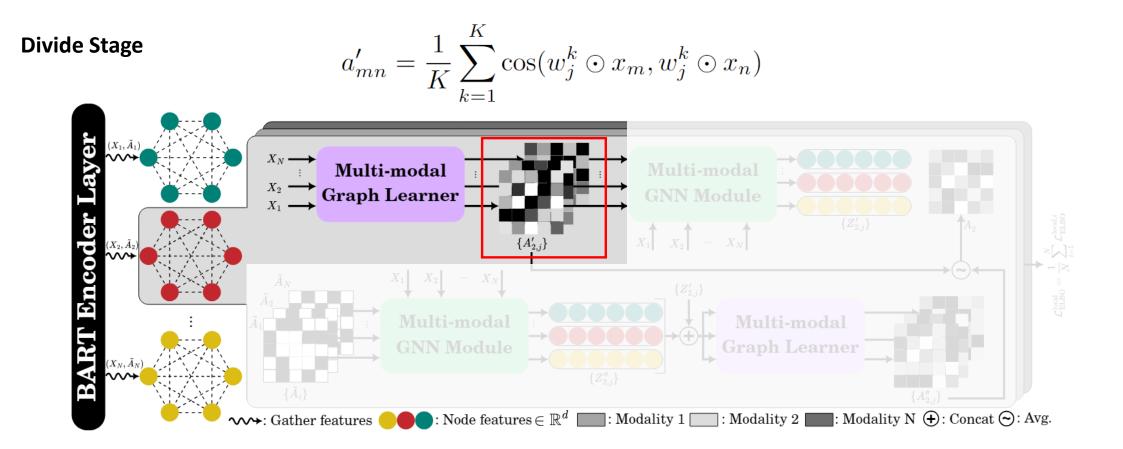
- Perform multi-modal state tracking using MIXER layers
- Interleave BART encoder layers with MIXER layers \rightarrow Enhance their hidden states

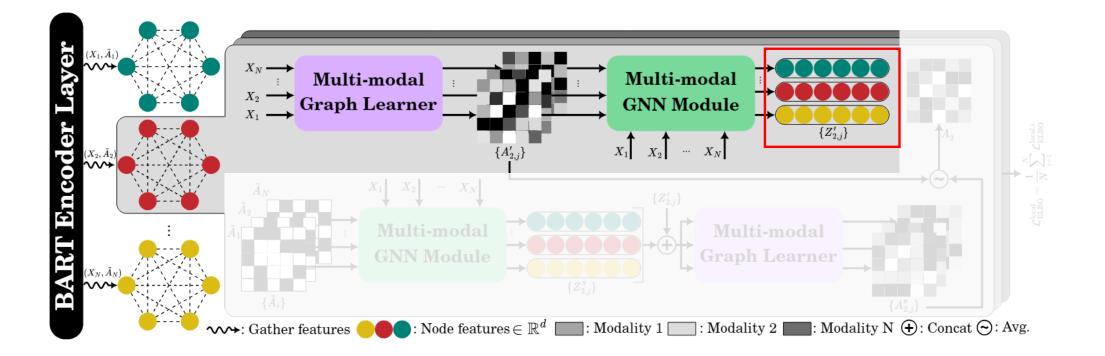


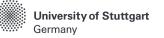
MIXER layer

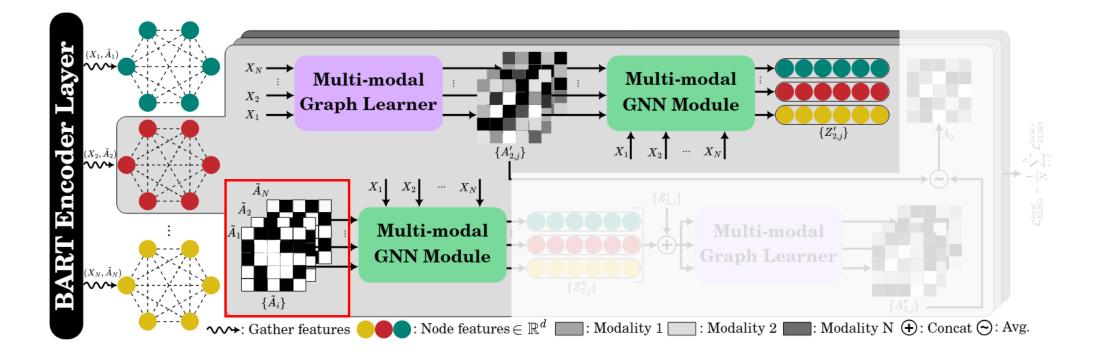

- Keeps track of the most relevant constituents of each modality at different semantic levels
- Employs a *divide-and-conquer* approach: local structures of individual modalities → global structure of the mix of all modalities

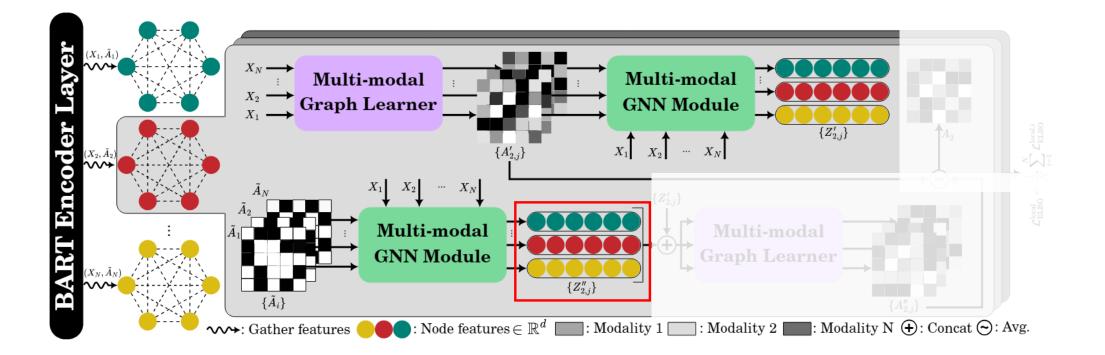
MIXER Layer 🦷											
xL	1	1									
BART Encoder Layer											
1			Ţ								
	C: One person awakens , then runs to the wardrobe to get a phone. Q_1 : Does the video start with the person laying down? A_1 : Yes he is sleeping in the beginning.	Does he do anything at the end?	He looks shocked as he looks athis phone.								
Video 🖻	Dialog History		Answer 🔗								

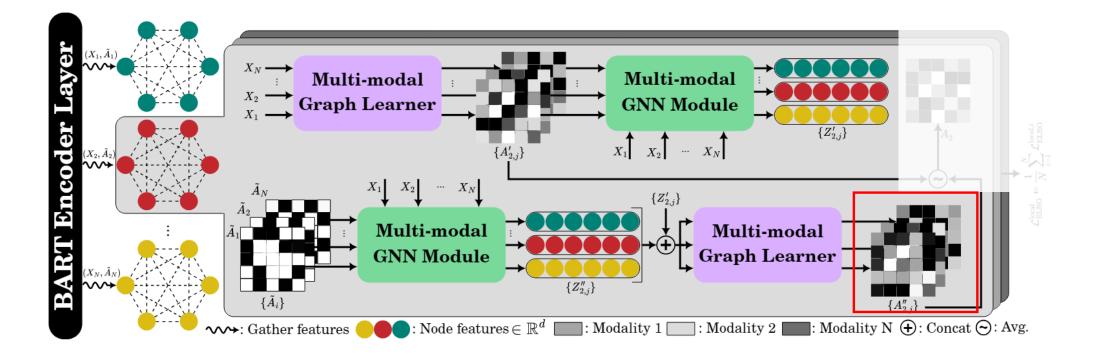


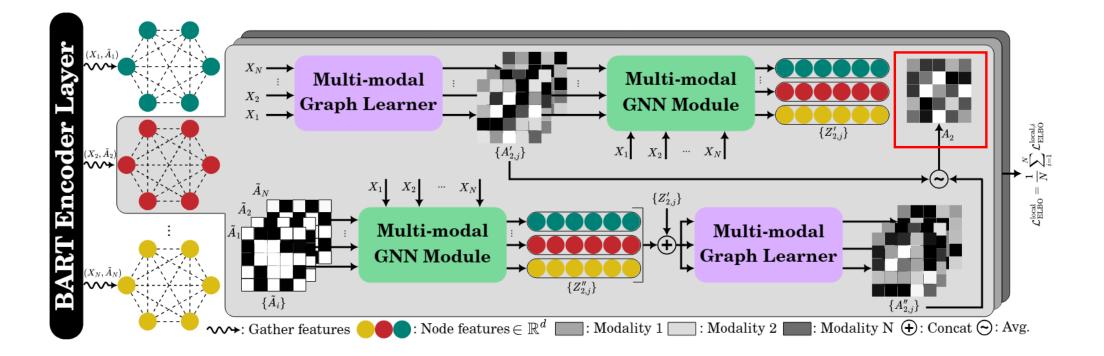


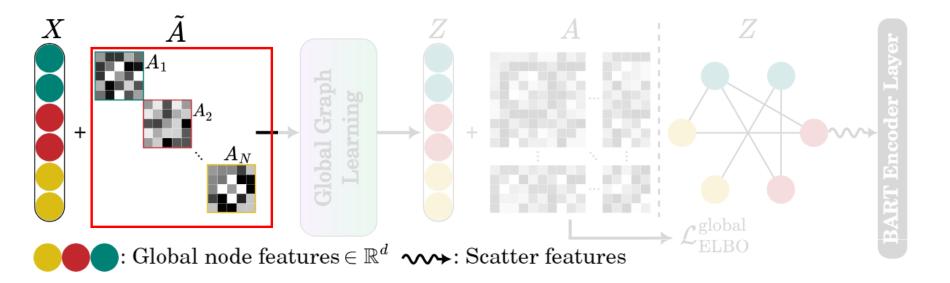


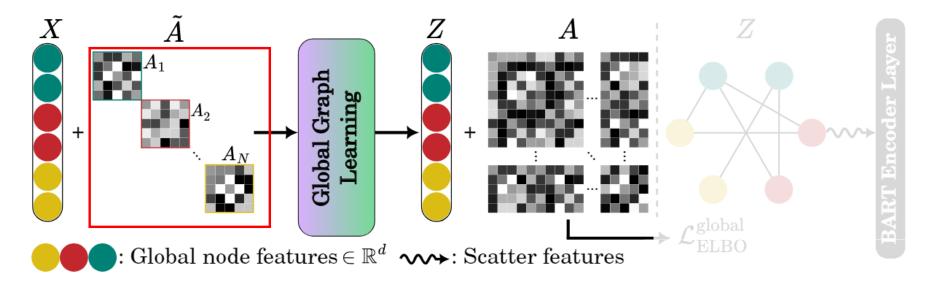


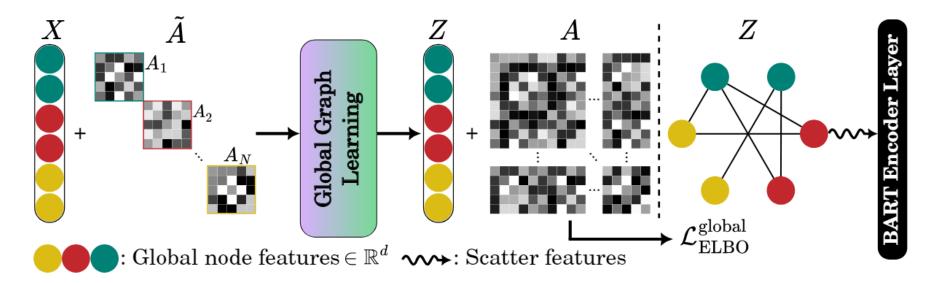


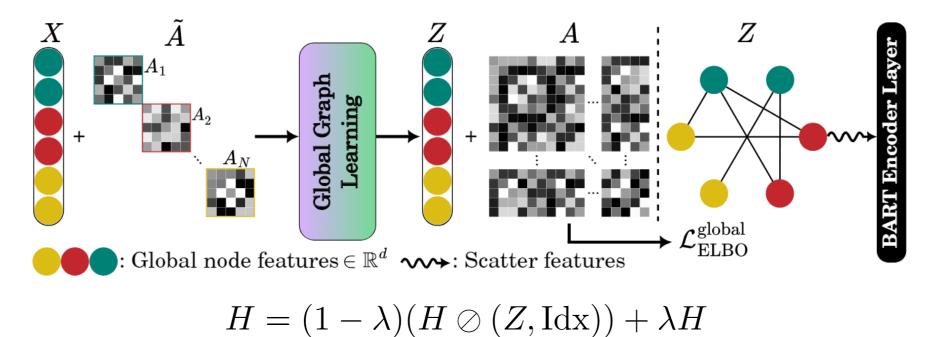


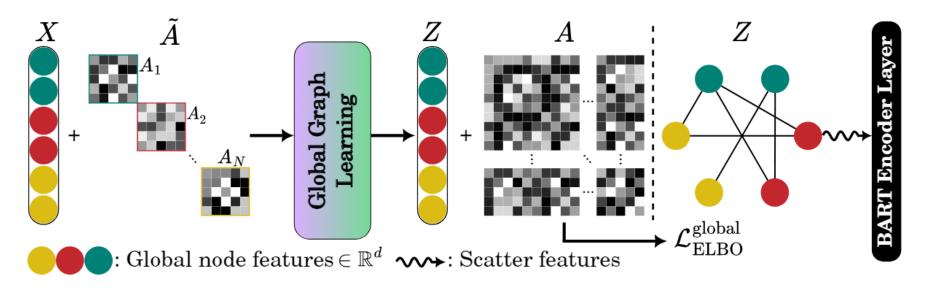












Conquer Stage

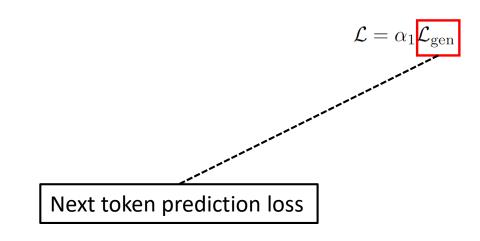
$H = (1 - \lambda)(H \oslash (Z, \mathrm{Idx})) + \lambda H$

- *H*: hidden states
- λ ∈ [0, 1] : hyper-parameters
 Ø: PyTorch scatter operation
 Z: global graph features

- *Idx*: indices of Z w.r.t. *H*

University of Stuttgart Germany

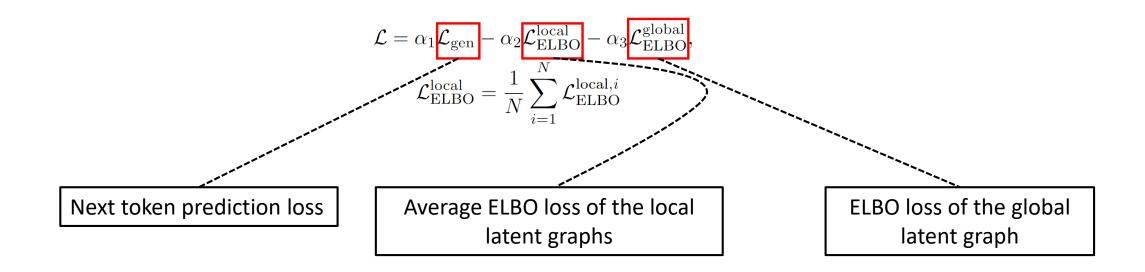
MST_{MIXER} @ ECCV 2024 - Abdessaied



MST_{MIXER} @ ECCV 2024 - Abdessaied

Training


Training



Training

Training

Results

B-n = BLEU-n, **M** = METEOR, **R** = Rouge-L, **C** = CIDEr

Model	Venue	AVSD-DSTC7						
		B-1	B-2	B-3	B-4	\mathbf{M}	R	С
Baseline	ICASSP'19	62.1	48.0	37.9	30.5	21.7	48.1	73.3
MTN	ACL'19	71.5	58.1	47.6	39.2	26.9	55.9	106.6
JMAN	AAAI'20	66.7	52.1	41.3	33.4	23.9	53.3	94.1
VGD	ACL'20	74.9	62.0	52.0	43.6	28.2	58.2	119.4
BiST	EMNLP'20	75.5	61.9	51.0	42.9	28.4	58.1	119.2
SCGA	AAAI'21	74.5	62.2	51.7	43.0	28.5	57.8	120.1
RLM	TASLP'21	76.5	64.3	54.3	45.9	29.4	60.6	130.8
PDC	ICLR '21	77.0	65.3	53.9	44.9	29.2	60.6	129.5
AV-TRN	ICASSP'22	_	_	_	40.6	26.2	55.4	107.9
VGNMN	NAACL'22	_	_	_	42.9	27.8	57.8	118.8
COST	ECCV'22	72.3	58.9	48.3	40.0	26.6	56.1	108.5
MRLV	NeurIPS'22	-	59.2	49.3	41.5	26.9	56.9	115.9
THAM	EMNLP'22	77.8	65.4	54.9	46.8	<u>30.8</u>	<u>61.9</u>	133.5
DialogMCF	TASLP'23	77.7	65.3	54.7	45.7	30.6	61.3	135.2
ITR	PAMI'23	<u>78.2</u>	<u>65.5</u>	<u>55.2</u>	<u>46.9</u>	30.5	<u>61.9</u>	133.1
MST _{mixer} 🔋	ECCV'24	78.7	66.5	56.3	47.6	31.3	62 .5	138.8

Germany

B-n = BLEU-n, **M** = METEOR, **R** = Rouge-L, **C** = CIDEr

Model	Venue	AVSD-DSTC7								
	Venue	B-1	B-2	B-3	B-4	\mathbf{M}	R	С		
Baseline	ICASSP'19	62.1	48.0	37.9	30.5	21.7	48.1	73.3		
MTN	ACL'19	71.5	58.1	47.6	39.2	26.9	55.9	106.6		
JMAN	AAAI'20	66.7	52.1	41.3	33.4	23.9	53.3	94.1		
VGD	ACL'20	74.9	62.0	52.0	43.6	28.2	58.2	119.4		
BiST	EMNLP'20	75.5	61.9	51.0	42.9	28.4	58.1	119.2		
SCGA	AAAI'21	74.5	62.2	51.7	43.0	28.5	57.8	120.1		
RLM	TASLP'21	76.5	64.3	54.3	45.9	29.4	60.6	130.8		
PDC	ICLR '21	77.0	65.3	53.9	44.9	29.2	60.6	129.5		
AV-TRN	ICASSP'22	_	_	_	40.6	26.2	55.4	107.9		
VGNMN	NAACL'22	_	_	_	42.9	27.8	57.8	118.8		
COST	ECCV'22	72.3	58.9	48.3	40.0	26.6	56.1	108.5		
MRLV	NeurIPS'22	_	59.2	49.3	41.5	26.9	56.9	115.9		
THAM	EMNLP'22	77.8	65.4	54.9	46.8	<u>30.8</u>	<u>61.9</u>	133.5		
DialogMCF	TASLP'23	77.7	65.3	54.7	45.7	30.6	61.3	135.2		
ITR	PAMI'23	<u>78.2</u>	<u>65.5</u>	<u>55.2</u>	<u>46.9</u>	30.5	<u>61.9</u>	133.1		
MST _{mixer}	ECCV'24	78.7	66.5	56.3	47.6	31.3	62 .5	138.8		

University of Stuttgart Germany

Model	Venue	AVSD-DSTC8							
	Vonuo		B-1	B-2	B-3	B-4	\mathbf{M}	R	С
Baseline	ICASSP'19		61.4	46.7	36.5	28.9	21.0	48.0	65.1
MTN	ACL'19		-	—	—	—	—	—	—
JMAN	AAAI'20	-	64.5	50.4	40.2	32.4	23.2	52.1	87.5
VGD	ACL'20		-	_	_	_	—	_	—
BiST	EMNLP'20		68.4	54.8	45.7	37.6	27.3	56.3	101.7
SCGA	AAAI'21		71.1	59.3	49.7	41.6	27.6	56.6	112.3
RLM	TASLP'21		74.6	62.6	52.8	44.5	28.6	59.8	124.0
PDC	ICLR '21		74.9	62.9	52.8	43.9	28.5	59.2	120.1
AV-TRN	ICASSP'22		-	_	_	39.4	25.0	54.5	99.7
VGNMN	NAACL'22		-	—	—	—	—	—	—
COST	ECCV'22		69.5	55.9	46.5	3.82	27.8	57.4	105.1
MRLV	NeurIPS'22		-	_	_	_	—	_	—
THAM	EMNLP'22		<u>76.4</u>	<u>64.1</u>	53.8	45.5	<u>30.1</u>	<u>61.0</u>	<u>130.4</u>
DialogMCF	TASLP'23		75.6	63.3	53.2	44.9	29.3	60.1	125.3
ITR	PAMI'23		76.2	<u>64.1</u>	<u>54.3</u>	<u>46.0</u>	29.8	60.7	128.5
MST _{mixer} 🗍	ECCV'24		77.5	66.0	56.1	47.7	30.6	62 .4	135.4

Model	Venue	AVSD-DSTC8							
mouor	Venue		B-1	B-2	B-3	B-4	\mathbf{M}	R	С
Baseline	ICASSP'19		61.4	46.7	36.5	28.9	21.0	48.0	65.1
MTN	ACL'19		—	_	_	_	_	_	_
JMAN	AAAI'20	-	64.5	50.4	40.2	32.4	23.2	52.1	87.5
VGD	ACL'20		_	_	_	_	—	_	—
BiST	EMNLP'20		68.4	54.8	45.7	37.6	27.3	56.3	101.7
SCGA	AAAI'21		71.1	59.3	49.7	41.6	27.6	56.6	112.3
RLM	TASLP'21		74.6	62.6	52.8	44.5	28.6	59.8	124.0
PDC	ICLR '21		74.9	62.9	52.8	43.9	28.5	59.2	120.1
AV-TRN	ICASSP'22		_	_	_	39.4	25.0	54.5	99.7
VGNMN	NAACL'22		_		_	_	_	_	—
COST	ECCV'22		69.5	55.9	46.5	3.82	27.8	57.4	105.1
MRLV	NeurIPS'22		_	_	_	_	—	_	—
THAM	EMNLP'22		<u>76.4</u>	<u>64.1</u>	53.8	45.5	<u>30.1</u>	<u>61.0</u>	<u>130.4</u>
DialogMCF	TASLP'23		75.6	63.3	53.2	44.9	29.3	60.1	125.3
ITR	PAMI'23		76.2	<u>64.1</u>	<u>54.3</u>	<u>46.0</u>	29.8	60.7	128.5
MST _{mixer} 🗍	ECCV'24		77.5	66.0	56.1	47.7	30.6	62 .4	135.4

Results

B-n = BLEU-n, **M** = METEOR, **R** = Rouge-L, **C** = CIDEr

Model	Venue	B-1	B-2	B-3	B-4	\mathbf{M}	\mathbf{R}	\mathbf{C}
AV-TRN	ICASSP'22	_		_	24.7	19.1	43.7	56.6
+ Ext.	ICASSP'22				37.1	24.5	53.5	86.9
DSTC10	AAAI'22	67.3	54.5	44.8	<u>37.2</u>	24.3	53.0	<u>91.2</u>
DialogMCF	TASLP'23	<u>69.3</u>	<u>55.6</u>	<u>45.0</u>	36.9	<u>24.9</u>	<u>53.6</u>	<u>91.2</u>
MST _{mixer}	ECCV'24	70.0	57.4	47.6	40.0	25.7	54.5	99.8

AVSD-DSTC10

B-n = BLEU-n, **M** = METEOR, **R** = Rouge-L, **C** = CIDEr

Model	Venue	B-1	B-2	B-3	B-4	\mathbf{M}	\mathbf{R}	С
AV-TRN	ICASSP'22	_		_	24.7	19.1	43.7	56.6
+ Ext.	ICASSP'22				37.1	24.5	53.5	86.9
DSTC10	AAAI'22	67.3	54.5	44.8	<u>37.2</u>	24.3	53.0	<u>91.2</u>
DialogMCF	TASLP'23	<u>69.3</u>	<u>55.6</u>	<u>45.0</u>	36.9	<u>24.9</u>	<u>53.6</u>	<u>91.2</u>
MST _{mixer} 🔋	ECCV'24	70.0	57.4	47.6	40.0	25.7	54.5	99.8

Model	Venue	B-4
MTN	ACL'19	21.7
GPT-2	EMNLP'21	19.2
BART	NAACL'22	33.1
PaCE	ACL'23	<u>34.1</u>
MST _{mixer} 🧋	ECCV'24	44.7

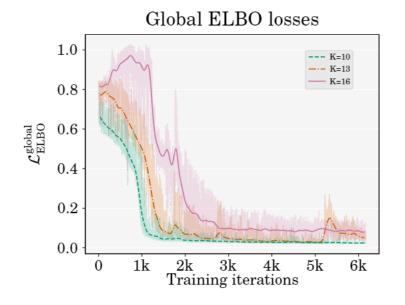
AVSD-DSTC10

SIMMC 2.0

B-n = BLEU-n, **M** = METEOR, **R** = Rouge-L, **C** = CIDEr

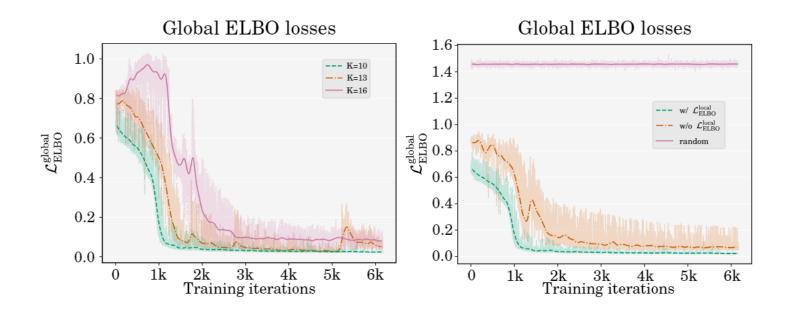
Model	Venue	B-1	B-2	B-3	B-4	\mathbf{M}	\mathbf{R}	С	Model Venue
AV-TRN	ICASSP'22	_	_	_	24.7	19.1	43.7	56.6	MTN ACL'19
+ Ext.	ICASSP'22	—	_	—	37.1	24.5	53.5	86.9	GPT-2 EMNL
DSTC10	AAAI'22	67.3	54.5	44.8	<u>37.2</u>	24.3	53.0	<u>91.2</u>	BART NAAC
DialogMCF	TASLP'23	<u>69.3</u>	<u>55.6</u>	<u>45.0</u>	36.9	<u>24.9</u>	<u>53.6</u>	<u>91.2</u>	PaCE ACL'23
MST _{mixer} 🗍	ECCV'24	70.0	57.4	47.6	40.0	25.7	54.5	99.8	MST _{MIXER} E CCV

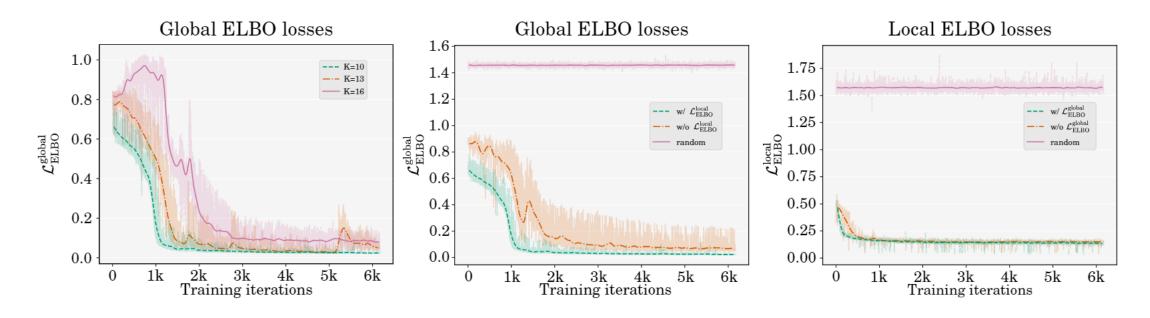
AVSD-DSTC10

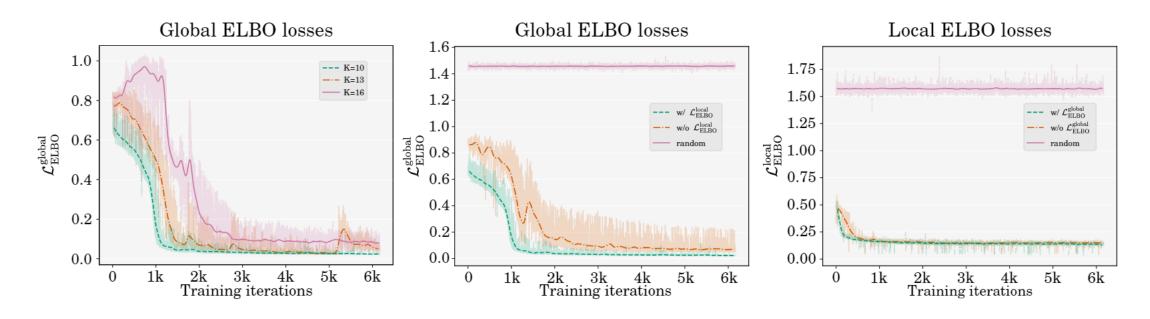

SIMMC 2.0

Model	Venue	$\mathbf{WUPS}_{\mathit{C}}$	\mathbf{WUPS}_T	\mathbf{WUPS}_D	WUPS
HCRN	CVPR'20	16.05	17.68	49.78	23.92
HGA	AAAI'20	17.98	17.95	50.84	24.06
Flamingo	NeurIPS'22	_	_	_	28.40
KcGA	AAAI'23	—	_	_	28.20
EMU	arXiv'23	—	—	_	23.40
MST _{mixer} 👮	ECCV'24	22.12	22.20	55.64	29.50
		01/000	······································		

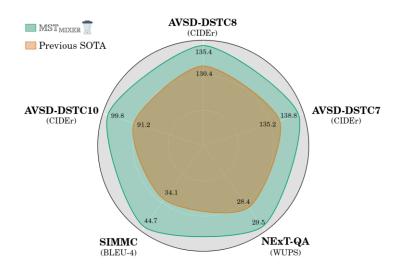
NExT-QA (open-ended)

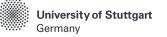



• Learning the latent graphs become more difficult when using a higher number of nodes K


- Learning the latent graphs become more difficult when using a higher number of nodes K
- The *divide* stage alleviates the difficulty of learning the global latent graphs

- Learning the latent graphs become more difficult when using a higher number of nodes K
- The divide stage alleviates the difficulty of learning the global latent graphs
- The *conquer* stage slightly improves the learning of the local latent graphs in the *divide* stage




- Learning the latent graphs become more difficult when using a higher number of nodes K
- The divide stage alleviates the difficulty of learning the global latent graphs
- The *conquer* stage slightly improves the learning of the local latent graphs in the *divide* stage
 - > Conquer stage benefits more from *divide* stage than vice-versa

Summary

- We proposed MST_{MIXER}: A novel multi-modal state tracking model specifically geared towards video dialog
- It first identifies the most influential constituents at different semantic levels
- Then, it relies on a *divide-and-conquer* GNN-based approach to infer the missing underlying structure of the mix of all modalities
- Finally, it leverages these features to augment the hidden states of a backbone VLM
- MST_{MIXER} achieves new SOTA results on a variety of challenging benchmarks

References

- 1. Alamri, H., Cartillier, V., Das, A., et al.: Audio visual scene-aware dialog. In CVPR (2019)
- 2. Antol, S., Agrawal, A., Lu, J., et al.: VQA: Visual Question Answering. In ICCV (2015)
- 3. Xu, D., Zhao, Z., et al.: Video question answering via gradually refined attention over appearance and motion. In **ACM MM** (2017)
- 4. Das, A., Kottur, S., Gupta, K., et al.: Visual Dialog. In CVPR (2017)
- 5. Lee, H., Lee, J., Kim, T.Y.: SUMBT: Slot-utterance matching for universal and scalable belief tracking. In ACL (2019)
- 6. Wu, C.S., Madotto, A., et al.: Transferable multi-domain state generator for task-oriented dialogue systems. In ACL (2019)
- 7. Le, H., Socher, R., Hoi, S.C.: Non-autoregressive dialog state tracking. In ICLR (2020)
- 8. Mrkšić, N., Ó Séaghdha, D., et al.: Neural belief tracker: Data-driven dialogue state tracking. In ACL (2017)
- 9. Le, H., Chen, N.F., Hoi, S.C.: Multimodal Dialogue State Tracking. In NAACL (2022)
- 10. Pang, W., Wang, X.: Visual dialogue state tracking for question generation. In AAAI (2020)
- 11. Abdessaied, A., Hochmeister, M., Bulling, A.: OLViT: Multi-modal state trackingvia attention-based embeddings for video-grounded dialog. In LREC-COLING (2024)
- Kottur, S., Moon, S., et al.: SIMMC 2.0: A task-oriented dialog dataset for immersive multimodal conversations. In EMNLP (2021)
 Moon, S., Kottur, S., Crook, P.A., et al.: Situated and interactive multimodal conversations. In COLING (2020)

Thank You!

Adnen Abdessaied, Lei Shi, Andreas Bulling University of Stuttgart, Germany adnen.abdessaied@vis.uni-stuttgart.de

02.10.2024

