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Introduction

From https://video-dialog.com/

Video Dialog - Task formulation
Given a video, audio data, a dialog history, and a question 
at time step t, generate an appropriate answer

Video Dialog is a natural extension to visual dialog
• Video vs image 
• Complements videos with audio data 

More input modalities 

https://video-dialog.com/
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Video Dialog is a natural extension to visual dialog
• Video vs image 
• Complements videos with audio data 
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Motivation

Video Dialog [1] is a highly multi-modal task More challenging than similar tasks

• VQA [2] & VideoQA [3]: Reasoning about the dialog history in addition to the question
• Visual Dialog [4]: Reasoning about a dynamic scene instead of a static image

Dialog State Tracking (DST) is crucial in building capable models 

• DST was originally introduced to track and update users’ goals in form of dialog states [5, 6]

• Now, it is broadly used to describe a model that keeps track of what it believes to be 
relevant for answering the question at hand



-

limited to synthetic and automatically-generated datasets [11, 12, 13] 
 do not reflect the complexity of real world scenarios

track the constituent of only one modality within a multi-modal task [9, 10]
 uni-modal DST

Current models with “multi-modal” DST fall short in two major aspects:
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Motivation

Research on DST has been predominately uni-modal in the form of slot-filling tasks [7, 8]

The current landscape necessitates extending DST to the multi-modal domain
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Motivation

MSTMIXER addresses the aforementioned limitations with

 modality-specific tracking blocks to identify the most relevant constituents of each modality

 a multi-modal GNN approach to learn the underlying structure between the mix of modalities

 Performs multi-modal state tracking in the real sense of the word
 Can tackle a wide-range of real-world datasets and benchmarks
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Method

Main Idea
• Perform multi-modal state tracking using MIXER layers
• Interleave BART encoder layers with MIXER layers  Enhance their hidden states 
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Method

MIXER layer
• Keeps track of the most relevant constituents of each modality at different semantic levels
• Employs a divide-and-conquer approach:

local structures of individual modalities  global structure of the mix of all modalities
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Method

Divide Stage
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Method

Conquer Stage

• 𝐻: hidden states
• 𝜆 ∈ [0, 1] : hyper-parameters
• ⊘: PyTorch scatter operation
• 𝑍: global graph features
• 𝐼𝑑𝑥: indices of Z w.r.t. 𝐻
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Method

Training

• We trained our model end-to-end using the following combination of losses:
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Method

Training

• We trained our model end-to-end using the following combination of losses:

Average ELBO loss of the local 
latent graphs

Next token prediction loss ELBO loss of the global
latent graph
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Results

B-n = BLEU-n, M = METEOR, R = Rouge-L, C = CIDEr



-

MSTMIXER @ ECCV 2024 - Abdessaied 37

Results

B-n = BLEU-n, M = METEOR, R = Rouge-L, C = CIDEr



-

MSTMIXER @ ECCV 2024 - Abdessaied 38

Results

B-n = BLEU-n, M = METEOR, R = Rouge-L, C = CIDEr



-

MSTMIXER @ ECCV 2024 - Abdessaied 39

Results

B-n = BLEU-n, M = METEOR, R = Rouge-L, C = CIDEr



-

MSTMIXER @ ECCV 2024 - Abdessaied 40

Results



-

MSTMIXER @ ECCV 2024 - Abdessaied 41

Results

B-n = BLEU-n, M = METEOR, R = Rouge-L, C = CIDEr

AVSD-DSTC10



-

MSTMIXER @ ECCV 2024 - Abdessaied 42

Results

B-n = BLEU-n, M = METEOR, R = Rouge-L, C = CIDEr

AVSD-DSTC10 SIMMC 2.0



-

MSTMIXER @ ECCV 2024 - Abdessaied 43

Results

B-n = BLEU-n, M = METEOR, R = Rouge-L, C = CIDEr

AVSD-DSTC10 SIMMC 2.0

NExT-QA (open-ended)

C = Causal, T = Temporal, D = Descriptive questions
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Ablation Study

• Learning the latent graphs become more difficult when using a higher number of nodes K
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Ablation Study

• Learning the latent graphs become more difficult when using a higher number of nodes K

• The divide stage alleviates the difficulty of learning the global latent graphs

• The conquer stage slightly improves the learning of the local latent graphs in the divide stage 

 Conquer stage benefits more from divide stage than vice-versa
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Summary

• We proposed MSTMIXER: A novel multi-modal state tracking model specifically geared towards video dialog

• It first identifies the most influential constituents at different semantic levels

• Then, it relies on a divide-and-conquer GNN-based approach to infer the missing underlying structure of the mix of 

all modalities

• Finally, it leverages these features to augment the hidden states of a backbone VLM

• MSTMIXER achieves new SOTA results on a variety of challenging benchmarks
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