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Problem Statement

Visual stimuli ReconstructionBrain Activities fMRI voxels

Motivation: 
Brain signal is indirectly understandable by humans. 
• Can we interpret brain signals? 
Brain patterns across individuals are unique. 
• Can we train a model for all subjects? 

UMBRAE performs Unified Cross-Subject Multimodal Brain Decoding using pretrained MLLMs with prompts. 

Neural (Visual) Decoding



Overview of UMBRAE Framework. The brain encoder includes (a) subject-specific tokenizers and (b) a universal
perceive encoder. Brain signals from multiple subjects are mapped into a common feature space, enabling cross-
subject training and weakly-supervised subject adaptation. The brain encoder is trained to align neural signals with
image features only, without the need for captions or bounding boxes during the training process.

During inference, the learned brain encoder interacts with MLLMs and performs a variety of brain understanding tasks
at different levels of granularity according to given prompts as the instructions.

Framework



Demo Examples

(Describe brain signals using texts) (Locate visual concepts using boxes)



Brain Captioning
Comparison with SOTAS. We are the only method that does not require captions during training.

UMBRAE-Sx means model trained with single-subject data; UMBRAE is a cross-subject model; 
Reference images are visual stimuli for input brain responses and are just used here for visualization. 



Brain Captioning
Results on Different Subjects



Brain Grounding
Referring Expression Comprehension: “Locate <expr> in <image> and provide its coordinates, please”



Brain Grounding
Spotting Captioning: “Please interpret this image and give coordinates [x1,y1,x2,y2] for each object you mention.”



Brain Grounding

Results on Different Subjects



Visual Decoding



BrainHub
For evaluation, we introduce BrainHub, a brain understanding benchmark, based on NSD and COCO.

There are 982 test images, 80 classes, 4,913 captions, and 5,829 boundingboxes. For grounding evaluation, we 
further group the 80 classes of COCO into 4 salience categories according to their salience in images: Salient (S), 
Salient Creatures (SC), Salient Objects (SO), and Inconspicuous (I). The illustration shows the statistics and mapping 
of our categories, w.r.t. COCO classes.



Quantitative Comparison
brain captioning

brain grounding
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Table 2: Brain Grounding. ‘UMBRAE-Sx’ refers to our model trained with a single
subject only, while ‘UMBRAE’ denotes the model with cross-subject training. ‘Shikra-
w/img’ refers to the visual grounding result from Shikra [9] using the ground truth
visual stimuli (images) as input. Similarly, ‘Shikra-w/method’ provides visual grounding
results using images produced by visual decoding methods [34, 41, 53]. We highlight
best , second-best , and third-best performance per subject.

Method Eval All Salient Salient Creatures Salient Objects Inconspicuous Time (s)acc@0.5 IoU acc@0.5 IoU acc@0.5 IoU acc@0.5 IoU acc@0.5 IoU

Shikra-w/img [9] * 51.96 47.22 62.92 56.44 66.71 59.34 58.79 53.27 38.29 35.71 0.96

Shikra-w/BrainDiffuser [34]

S1

17.49 19.34 27.18 27.46 38.71 34.63 14.62 19.66 5.39 9.20 16.4
Shikra-w/MindEye [41] 15.34 18.65 23.83 26.96 29.29 31.64 17.88 21.86 4.74 8.28 16.4
Shikra-w/DREAM [53] 16.21 18.65 26.51 27.35 34.43 33.85 17.88 20.28 3.35 7.78 10.5
Shikra-w/UMBRAE 16.83 18.69 27.10 27.55 34.14 33.65 19.44 20.92 4.00 7.64 16.4
UMBRAE-S1 13.72 17.56 21.52 25.14 26.00 29.06 16.64 20.88 4.00 8.08 0.92
UMBRAE 18.93 21.28 30.23 30.18 39.57 36.64 20.06 23.14 4.83 10.18 0.92

UMBRAE-S2 S2 15.21 18.68 23.60 26.59 27.86 30.51 18.97 22.32 4.74 8.81 -
UMBRAE 18.27 20.77 28.22 29.19 38.29 36.13 17.26 21.63 5.86 10.25 -

UMBRAE-S5 S5 14.72 18.45 22.93 26.34 26.86 29.84 18.66 22.52 4.46 8.60 -
UMBRAE 18.19 20.85 28.74 30.02 36.71 36.25 20.06 23.23 5.02 9.41 -

UMBRAE-S7 S7 13.60 17.83 21.07 25.19 24.57 28.90 17.26 21.15 4.28 8.64 -
UMBRAE 16.74 19.63 25.69 27.90 33.14 33.42 17.57 21.89 5.58 9.31 -

* The subjects test sets use the same reference images making ‘Shikra-w/img’ identical for all subjects.

decoding effectively reconstruct the salient creatures in the image space, arguably
because the subject focuses on the latter.

Experimentally, we also notice that images containing few salient objects
exhibit better performance compared to cluttered scenes, and easy background
also lead to better grounding. Conversely, we note that localization suffers
when images are filled with numerous inconspicuous objects. We argue that
inconspicuous objects in the image may not draw the subject’s attention, or that
relevant brain activities may not be effectively captured during experiments [2].
Our categorization and observation also align with the semantic selectivity
found in the higher visual cortex of the human brain [13,21, 38], which contains
specialization of certain regions that respond selectively to specific semantic
categories of visual stimuli, such as faces, bodies, words, food, and places. The
results demonstrate that our method performs well in relevant cases.

4.5 Brain Retrieval

The retrieval evaluation demonstrates the amount of image-specific information
contained in the brain embedding. Following [41], we conduct three experiments:
forward retrieval, backward retrieval, and exemplar retrieval. The forward retrieval
computes accuracy of identifying the correct paired CLIP image embedding from
300 brain embeddings. Conversely, the backward retrieval finding the correct
brain embedding from 300 image embeddings. For a fair comparison, we modify
the output dimension and proceed to optimize the encoder and embedding using
an InfoNCE [33] loss. We follow the same procedure as in [28] for calculating
the retrieval metrics reported in Tab. 3. The exemplar retrieval aims to find
the exact original image within the 982 test images. Our method outperforms
current methods with accuracy percentages of 94.2%, 91.3%, and 93.8% on
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Table 1: Brain Captioning. ‘UMBRAE-S1’ refers to our model trained with a single
subject (S1 here) only, while ‘UMBRAE’ denotes the model with cross-subject training.
‘Shikra-w/img’ refers to the image captioning result from Shikra [9] using the ground
truth image as input, serving as an approximate upper bound. The colors represent
the best , second-best , and third-best performance. Brain captioning results for the
other subjects are provided in the appendix.

Method BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE CLIP-S RefCLIP-S

Shikra-w/img [9] 82.38 69.90 58.63 49.66 35.60 65.49 161.43 27.62 80.60 85.92

SDRecon [44] 36.21 17.11 7.72 3.43 10.03 25.13 13.83 5.02 61.07 66.36
OneLLM [16] 47.04 26.97 15.49 9.51 13.55 35.05 22.99 6.26 54.80 61.28
UniBrain [32] - - - - 16.90 22.20 - - - -
BrainCap [14] 55.96 36.21 22.70 14.51 16.68 40.69 41.30 9.06 64.31 69.90

UMBRAE-S1 57.63 38.02 25.00 16.76 18.41 42.15 51.93 11.83 66.44 72.12
UMBRAE 59.44 40.48 27.66 19.03 19.45 43.71 61.06 12.79 67.78 73.54

ground truth labels, we evaluate bounding boxes through the task of re-
ferring expression comprehension [56], using accuracy and intersection over
union (IoU) as the evaluation metrics.

– Brain Retrieval is to search for pertinent results in response to a provided
query from a large database, often considered as a form of fine-grained,
instance-level classification. The evaluation metric used is accuracy.

– Visual Decoding refers to the capability to reconstruct the visual stimuli
associated with the fMRI data. We include it here for consistency with the
extensive literature on visual decoding [34,41].

4.3 Brain Captioning

Tab. 1 provides an evaluation of our brain captioning for subject 1 (S1), with
respect to SOTA baselines being SDRecon [45], BrainCap [14] and OneLLM [16].
From the latter table, UMBRAE outperforms all baselines by a significant
margin on all metrics. SDRecon poor performance results from its limited limited
vocabulary, and the use redundant or meaningless words in its captioning, such
as ‘person and person with person person wearing a tie shirt person person,
women’s clothing.’, which impacts the quality metrics negatively. BrainCap [14]
follows a similar pipeline but replaces the captioning model, which performs
better. OneLLM [16] learns a unified encoder for multimodal-text alignment
which improves the caption quality but deteriorates the CLIP similarity score,
as it merely aligns with texts. In contrast, the alignment with image features of
UMBRAE preserves more accurate semantic and spatial cues decoded from the
brain signals. Moreover, the use of LLMs helps generate sentences that are fluent,
complete, and rich in information. Interestingly, we note that the performance of
UMBRAE (trained on S1, S2, S5, S7) exceeds those when trained only on data
from S1 (UMBRAE-S1), demonstrating the ability to learn from cross-subject
patterns. As a approximate upper bound, we also report ‘Shikra-w/img’ which,
similar to us, utilizes Shikra [9] for captioning though here using the ground truth
image (visual stimuli). Results for other subjects are provided in the appendix.



Weakly-Supervised Adaptation
Adapting a new subject to a pretrained brain encoder, using only a portion of training examples: this model for S7 is 
trained or finetuned on a pretrained model (trained on S1, S2, and S5) using varying ratios of training data
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Captioning Grounding

Fig. 4: Weakly-Supervised Subject Adaptation. This model for S7 is trained or
finetuned on a pretrained model (trained on S1, S2, and S5) using varying ratios (0.05,
0.1, 0.2, 0.3, 0.5, 0.8, 1.0) of training data. The model achieves comparable performance
using only 30% of the data and obtains better results when increasing the ratio of used
training samples to 50%, compared to the model trained on the full dataset of S7.

Moreover, with access to common conditions like texts, image embeddings, and
bounding boxes, we can leverage a wide range of pretrained image generation
models. These models encompass text-to-image (e.g ., SD [40], SD-XL [37]),
layout-to-image [26], and multiple-condition [55]. Details are in the appendix.

4.7 Weakly-Supervised Adaptation

Capturing brain signals, such as high-resolution fMRI, requires specialized equip-
ment and professional personnel, making it challenging to collect on a large
scale. A benefit of our cross-subjects training is to allow subject adaptation with
minimal training data. To evaluate this emerging property, we train our brain
encoder with subjects S1, S2, and S5 and seek to adapt the trained to a new
subject S7 using various amount of training data. For ablation, we explore two
settings where we train a new tokenizer for S7 with the universal perceive encoder
being either Frozen or Finetuned.

Plots in Fig. 4 report ‘Frozen’ and ‘Finetuned’ adaptation with variable
amount of S7 data. Additionally, we report ‘UMBRAE’ when trained with all
training data of {S1, S2, S5, S7} as as well as ‘UMBRAE-S7’ trained on all S7 data
only. Notably, compared to ‘UMBRAE-S7’, our ‘Finetuned’ adaptation achieves
comparable performance using only 30% of the data and often better when
using more than 50%. Training only the tokenizer while keeping the pretrained
backbone encoder frozen generally resulted in lower performance compared to
fine-tuning the backbone together. This could be because the backbone encoder
did not adequately incorporate the subject discrepancy in S7. Please consult the
appendix for extra results and discussions on other subjects.



Ablation Studies: network architecture
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Table 5: Ablation Study. ‘MLP’ refers to the MLP-based brain encoder [41], while
‘Enc-S’ and ‘Enc-U’ represent our transformer-based encoders for single and multiple
subjects, respectively. ‘Dim.’ means the output dimension of the brain encoder. The
output needs to be passed to the adapter for further processing if it is 1024; otherwise, it
is directly inputted into the LLM. The adapter has three training settings: ‘Pretrained’
means freezing the weights, ‘Finetuned’ means finetuning based on the pretrained
weights, and ‘Joint’ means training with the encoder from scratch. ‘Loss Type’ refers to
loss functions (MSE, NCE, or both) applied to the outputs from the encoder (E.) or
the adapter (A.).

Different Ablation Configurations Captioning Grounding
All Salient

Arch. Dim. Adapter Loss Type BLEU1 CIDEr SPICE CLIP-S RefCLIP-S acc@0.5 IoU acc@0.5 IoU

MLP 1024 Pretrained MSE (E.) 55.04 46.24 10.80 64.75 70.59 13.44 17.54 20.55 24.68
MLP 1024 Finetuned MSE (A.) 54.02 43.24 10.35 64.09 70.02 13.56 17.91 20.92 25.54
Enc-S 1024 Pretrained MSE (E.) 57.63 51.93 11.83 66.44 72.12 13.72 17.56 21.52 25.14
Enc-S 4096 N/A MSE (A.) 52.06 36.40 9.06 62.30 68.27 13.31 17.04 20.85 24.78
Enc-S 1024 Joint MSE (A.) 55.02 43.53 10.48 64.00 70.01 13.72 17.57 21.44 25.15
Enc-S 1024 Joint MSE (E.) NCE (A.) 27.09 3.16 1.27 52.69 59.08 8.72 11.40 13.78 16.26
Enc-S 1024 Joint MSE (A.) NCE (A.) 51.69 34.09 8.71 62.27 68.05 13.68 18.07 21.07 25.45
Enc-U 1024 Pretrained MSE (E.) 59.44 61.06 12.79 67.78 73.54 18.93 21.28 30.23 30.18

5 Ablation Study

5.1 Architectural Improvements

MLP-based Encoder vs. Our Encoder. The MLP-based brain encoder is
adapted from [41] with slight adjustments to match the desired output dimension.
This deep MLP backbone amounts to 1,003.64 million parameters per subject. In
comparison, our model needs only 112.63 million parameters for a single subject
and 146.24 million for all four subjects. This translates to an 88.78% reduction
in parameters for a single subject and a 96.36% reduction for all four subjects,
respectively. Our single-subject encoder (denoted as UMBRAE-Sx) surpasses
the MLP-based architecture [41] in captioning (Tab. 1), grounding (Tab. 2), and
retrieval (Tab. 3) tasks by significant margins. The universal encoder (denoted
as UMBRAE) achieves even greater performance improvements.
Single vs. Cross-Subject Design. The universal encoder differs from the
single-subject encoder solely in the addition of subject-specific tokenizers (Sec. 3.1),
and its training only varies in the batch sampling strategy (Sec. 3.2), enabling the
training of diverse subjects within one model. Additionally, the resources required
are basically the same as those for training a single-subject model, eliminating
the necessity of extra training time or computational resources. This cross-subject
design benefits from user diversity, achieving superior performance compared to
focusing on a single subject. Results in Tabs. 1 to 3 show that the cross-subject
design surpasses its single-subject counterpart across almost metrics.

5.2 Training Strategies

Current vision-language models typically comprise three main components: an
image encoder, an adapter, and a large language model. Within this framework,
there are several potential ways for multimodal-brain alignment. For example,

MLP: MLP-based brain encoder

Enc-S and Enc-U: the single and cross-subject encoders

The adapter operates under three distinct training settings: Pretrained, Finetuned, and Joint, with different Loss Types 

applied to the outputs with Dim. from either the encoder (E) or the adapter (A)



Ablation Studies: sampling strategy in cross-subject training
Comparison (right) of using different sampling strategies (left) when training the cross-subject brain encoder30 W. Xia et al.
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Sampling Captioning Grounding
BLEU1 CIDEr METER RefCLIPS acc@0.5 (A) IoU (A) acc@0.5 (S) IoU (S)

Random 51.84 35.37 15.52 67.26 13.49 17.39 21.56 25.39
Stratified 58.91 55.83 18.94 72.69 17.31 20.34 27.08 29.03
Ours-R 58.02 55.02 18.68 72.09 15.22 18.84 23.58 26.74
Ours 59.09 57.76 19.24 72.96 18.03 20.63 28.22 29.32

Table 8: Comparison of Sampling Strategies. ‘Random’ means all subjects are
randomly sampled, while ‘Stratified’ ensures that data from the four subjects are equal
in number within a batch. ‘Ours-R’ and ‘Ours’ are the same when sampling from the
selected dominant subject but differ for the remaining three subjects.

D.3 Sampling Strategies in Cross-Subject Training

There are different sampling strategies of subjects and data samples in the cross-
subject training. Our batch of B samples is made of ✓⇥B samples from the
same user chosen according to users frequencies, while the remaining samples
are then sampled from other users. This is illustrated on the left of Tab. 8 using,
for simplicity, four users, ✓=0.44 and B=16. ‘Random’ means all subjects are
randomly sampled, while ‘Stratified’ ensures that data samples from the four
subjects are equal in number within a batch. ‘Ours-R’ and ‘Ours’ are the same
for the dominant subject but differ in the sampling strategies for the remaining
three subjects. Using a dominant subject per batch helps the model to learn
intra-subject variations while being exposed to other subjects patterns to enhance
inter-subject discrimination and alleviate catastrophic forgetting. Tab. 8 reports
average metrics across users for ‘Random’, ‘Stratified’, ‘Ours-R’, and ‘Ours’ (using
✓=0.50, B=256). Ours outperforms all other sampling strategies.

D.4 Joint Grounding-Decoding Evaluation

We visualize grounding results on the reference images (ground truth) to better
assess their performance. Fig. 11 further shows grounding and reconstruction
simultaneously to highlight their synergy. Results demonstrate that the two tasks
are correlated. In some cases, although grounding is correct, reconstruction is
inaccurate (e.g . surfer, giraffe, and skier are well located but misorriented). The
first row presents reference images. The second row displays reconstructed images,
which are generated using the decoded texts and groundings from the third row
as inputs. The third row illustrates the spotting captioning results, where the
coordinates for each mentioned object are omitted and instead visualized in color
within the corresponding generated images shown in the second row.

D.5 Other Supported Tasks

As we build on MLLM, we can explore a large variety of tasks. Tab. 1 lists the sup-
ported tasks, which can be categorized into three groups: captioning, grounding,
and QA. We have presented the brain captioning results in Appendix C.1 and the
brain grounding (both REC and Spotting Captioning) results in Appendix C.2.

Random: all subjects are randomly sampled

Stratified: data from the four subjects are equal in number within a batch. 

Ours-R and Ours are the same when sampling from the selected dominant subject but differ for remaining three subjects.



Failure Cases
The performance relies on the salience of objects in the image, especially suffers when dealing with inconspicuous objects.
Other failure cases can be categorized into three types:  (a) correct semantic recognition but inaccurate spatial localization, 
(b) accurate spatial localization but semantic errors, and (c) errors in both semantic recognition and spatial localization.

A vase [0.302,0.474,0.670,0.998] 
filled with flowers 
[0.120,0.002,0.890,0.860].

A baseball player 
[0.272,0.262,0.722,0.998] is standing 
on the field [0.000,0.804,0.998,0.998] 
with his bat [0.470,0.426,0.586,0.558] 
in hands [0.470,0.436,0.550,0.486].

A kitchen with a sink 
[0.000,0.516,0.186,0.716] and lots 
of cupboard space 
[0.000,0.512,0.998,0.998]

A computer 
[0.000,0.490,0.286,0.856;0.540,0.5
26,0.840,0.726] with a monitor 
[0.540,0.526,0.840,0.726] and 
keyboard [0.580,0.712,0.786,0.800] 
is shown.

A man [0.380,0.254,0.622,0.510] is 
sitting on a bicycle 
[0.128,0.420,0.846,0.998].

A man [0.300,0.202,0.706,0.762] 
in a black jacket 
[0.342,0.204,0.658,0.532] is 
skiing down a slope 
[0.004,0.378,0.998,0.998].

A fluffy white cat 
[0.174,0.022,0.830,0.854] is sitting 
on a white sofa 
[0.000,0.408,0.998,0.998] with a 
white blanket 
[0.000,0.408,0.998,0.998].

A group of zebras 
[0.022,0.588,0.288,0.920;0.706,0.6
02,0.998,0.998;0.258,0.602,0.458,
0.852;0.540,0.592,0.874,0.846;0.4
86,0.584,0.686,0.784] are standing 
in a field.

A bathroom with a sink 
[0.340,0.704,0.726,0.824] and a 
large mirror 
[0.000,0.000,0.996,0.998].

A man [0.476,0.586,0.536,0.704] 
with a large bookbag 
[0.474,0.786,0.536,0.936] walks 
down the street 
[0.000,0.722,0.998,0.998].

A man [0.734,0.588,0.998,0.700] is 
sitting on a bench 
[0.000,0.630,0.998,0.900] 
underneath some trees 
[0.006,0.002,0.996,0.678].

A person [0.140,0.272,0.998,0.998] 
is sitting down, perhaps in a car 
[0.002,0.004,0.998,0.998].

(a) (b) (c)
(a) correct semantic recognition but inaccurate spatial localization, 
(b)accurate spatial localization but semantic errors, and 
(c) errors in both semantic recognition and spatial localization. 

A dog [0.000,0.000,0.998,0.998] 
looks on with his head 
[0.282,0.280,0.726,0.730] tilted to 
the side.

A large brown bear 
[0.136,0.278,0.908,0.874] is sitting 
on a rocky ground, with a blurry 
background.

There is a bottle of wine 
[0.174,0.124,0.780,0.744] in a case 
[0.162,0.124,0.774,0.870] on a 
table [0.002,0.724,0.998,0.998].
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