

The Hard Positive Truth about Vision-Language Compositionality

Amita Kamath

Cheng-Yu Hsieh

Kai-Wei Chang

Ranjay Krishna

Vision-Language What is Compositionality?

"The meaning of the whole is a function of the meaning of its parts."

 Recognizing the effect of word swaps and replacements on sentence meaning

... in the context of an image

• a.k.a. Fine-grained Vision-Language Understanding

Background

Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality
Thrush et al, CVPR 2022

a mug in some grass

some grass in a mug

Background

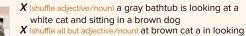
When and Why VL Models Behave like Bags-of-Words, and What to Do about it

Yuksekgonul et al, ICLR 2023

✓ the paved road and the white houseX the white road and the paved house

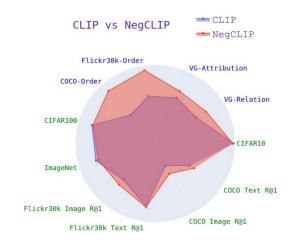
COCO Order and Flickr Order Assessing sensitivity to order (6,000 test cases)

a brown cat is looking at a gray dog and sitting in a white bathtub



- a gray dog sitting is and a white bathtub \boldsymbol{X} (shuffle words within trigrams) cat brown a at is looking a gray dog in and sitting bathtub a white
- X (shuffle trigrams) a brown cat a white bathtub is looking at a gray dog and sitting in

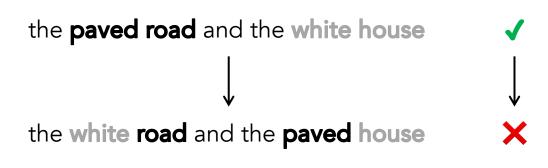
Finetune

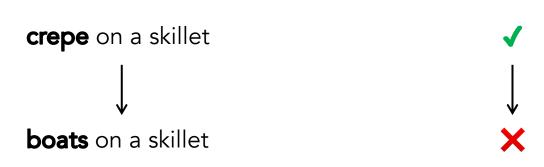


Background

Paper	Venue	Perturbation	Finetune?
Winoground	CVPR 2022 (Oral)	word order	
VL-Checklist	EMNLP 2022	replacements	
When-and-Why	ICLR 2023 (Oral)	word order	✓
CREPE	CVPR 2023 (Spotlight)	word order replacements negations	
SVLC	CVPR 2023	replacements	✓
DAC	NeurlPS 2023 (spotlight)	replacements	✓
What's Up	EMNLP 2023	replacements	✓
Text encoders	EMNLP 2023	word order	
SugarCREPE	NeurlPS 2023	word order replacements additions	√
COLA	NeurlPS 2023 D&B	replacements	✓

But...





So...

Goal: Teach models to understand

that how word order / word replacements

change impact meaning, always

Which isn't true (and isn't compositionality)

We introduce Hard Positives

Hard Negative: semantics-altering change to the original caption

Hard Positive: semantics-retaining change to the original caption

the **paved road** and the **white house**

the **white road** and the **paved house**

the white house and the paved road

lmage i

Existing work

	Captions	CLIP	Hard Negative Finetuned	
Original Caption c	rown grass	0.236	0.152	
Hard Negative c _N	blue grass	0.240	0.143	

Existing work

	Captions	CLIP	Hard Negative Finetuned	Ours
Original Caption c	brown grass	0.236	0.152	0.240
Hard Negative c _N	blue grass	0.240	0.143	0.231
Hard <u>Positive</u> c _P	chestnut grass	0.249	0.134	0.241

Image i Our work

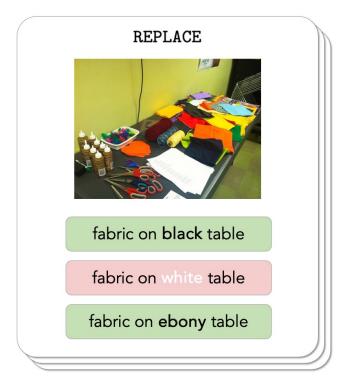
Hard Positive Benchmarks

lmage i

Original Caption c

Hard Negative c_N

Hard Positive c_P



x 27,443

x 28,748

Evaluation

		REPLACE		SWAP		REPLACE	SWAP
	Model	Orig. Test Acc.	Aug. Test Acc.	$\begin{array}{c} { m Orig.} \\ { m Test \ Acc.} \end{array}$	$egin{array}{c} { m Aug.} \\ { m Test \ Acc.} \end{array}$	Brittleness (\downarrow)	$\operatorname{Brittleness}(\downarrow)$
(a)	CLIP ViT-B/32	61.6	46.8 (-14.9)	60.5	49.6 (-10.9)	23.2	21.7
	NegCLIP	68.6	52.1 (-16.6)	70.9	56.7 (-14.2)	21.5	26.4
	CREPE-Swap	63.5	50.4 (-13.1)	70.6	56.7 (-13.9)	19.8	26.0
	CREPE-Replace	73.7	53.9 (-19.8)	71.1	57.7 (-13.4)	23.9	25.4
(b)	SVLC	76.6	44.5 (-32.1)	72.4	61.6 (-10.9)	39.9	20.8
	$\mathrm{SVLC}\mathrm{+Pos}$	64.3	45.0 (-19.3)	56.5	45.4 (-11.1)	29.8	22.8
	DAC-LLM	87.6	48.9 (-38.7)	72.0	61.1 (-10.9)	40.1	21.6
	DAC-SAM	86.9	55.9 (-31.0)	69.5	56.5 (-13.0)	32.5	25.6

Up to 39% drop in reported performance!

Findings

- Models are oversensitive, and hard negative finetuning makes them even more so
 - \rightarrow HNFT doesn't help models understand when perturbations matter
- Oversensitivity transfers across perturbation types
- HNFT lowers scores of the original captions too
 - → hurts use cases like caption evaluation

Improving model performance

- Programmatically generate hard positives from COCO
- Finetune CLIP on hard negatives and hard positives

Improving model performance

		REPLACE		SWAP		REPLACE	SWAP
	Model	Orig. Test Acc.	Aug. Test Acc.	Orig. Test Acc.	$egin{array}{c} { m Aug.} \\ { m Test \ Acc.} \end{array}$	Brittleness (\downarrow)	$\operatorname{Brittleness}(\downarrow)$
(a)	CLIP ViT-B/32	61.6	46.8 (-14.9)	60.5	49.6 (-10.9)	23.2	21.7
(b)	NegCLIP CREPE-Swap CREPE-Replace SVLC SVLC+Pos DAC-LLM DAC-SAM	68.6 63.5 73.7 76.6 64.3 87.6 86.9	52.1 (-16.6) 50.4 (-13.1) 53.9 (-19.8) 44.5 (-32.1) 45.0 (-19.3) 48.9 (-38.7) 55.9 (-31.0)	70.9 70.6 71.1 72.4 56.5 72.0 69.5	56.7 (-14.2) 56.7 (-13.9) 57.7 (-13.4) 61.6 (-10.9) 45.4 (-11.1) 61.1 (-10.9) 56.5 (-13.0)	21.5 19.8 23.9 39.9 29.8 40.1 32.5	26.4 26.0 25.4 20.8 22.8 21.6 25.6
(c)	Our HN Our HP+HN	73.9 69.0	55.7 (-18.2) 58.0 (-11.0)	$74.3 \\ 73.2$	60.5 (-13.8) 61.1 (-12.1)	21.0 16.9	25.1 22.9
(d)	Our HP+HN (Swap-only) Our HP+HN (Replace-only)	63.9 70.9	51.6 (-12.3) 59.0 (-11.9)	73.0 69.7	61.9 (-11.2) 55.6 (-14.1)	18.6 17.8	21.2 26.5
	Random Chance Human Estimate	50.0 97	33.3 97	50.0 100	33.3 100	33.3 0	33.3 0

Findings

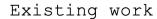
- Adding hard positives to finetuning improves model performance
- Performance on standard benchmarks ✓
- Oversensitivity transfers across perturbations, but improved invariance does not

Check the paper for further experiments targeting different variants of CLIP, and changing the ratio between hard positives and hard negatives!

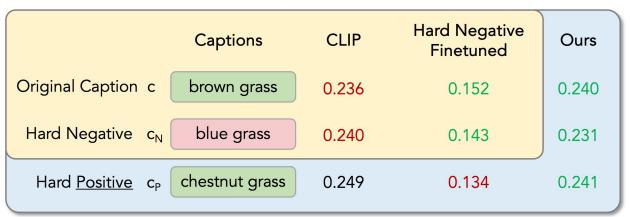
Hard Positives: an important new aspect of VL compositionality

VL models aren't compositional, and hard-negative finetuning makes them oversensitive

Our new model performs well on both hard negatives and hard positives!



lmage i	Our	work
mago i		WOIN



Thank you!