

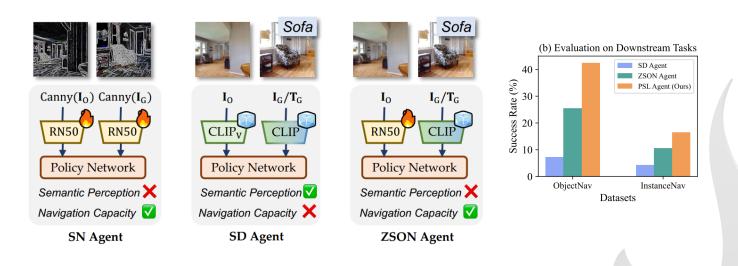
Prioritized Semantic Learning for Zero-shot Instance Navigation

Xinyu Sun¹* Lizhao Liu³* Hongyan Zhi Ronghe Qiu¹ Junwei Liang^{1,2†}

¹ Al Thrust, The Hong Kong University of Science and Technology (Guangzhou)

² Department of Computer Science and Engineering, The Hong Kong University of Science and Technology

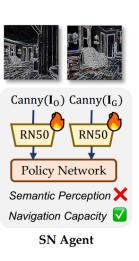
³ Tencent AI Lab, Shenzhen, China



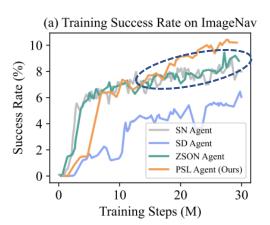
https://github.com/XinyuSun/PSL-InstanceNav

ECCV 2024

Motivation

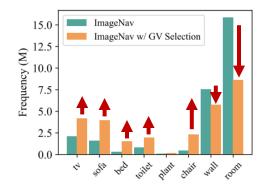

Existing methods can not posses Semantic Perception and Navigation Capacity simultaneously.

Motivation


The SN agent can achieve high **ImageNav** success rate without perceiving semantic clues.

Existing **ImageNav** pre-training dataset is not suitable for training a **semantic navigation agent**.

Motivation

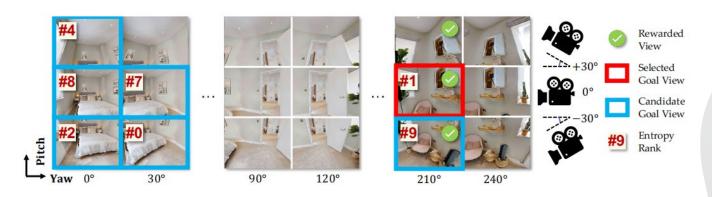


The images in **ImageNav** dataset suffer from **unreas onable category distribution.**

Method: Entropy-minimized Goal View Selection.

Increasing the frequency of **objects** in images && Reducing the freq. of **meaningless regions** in images.

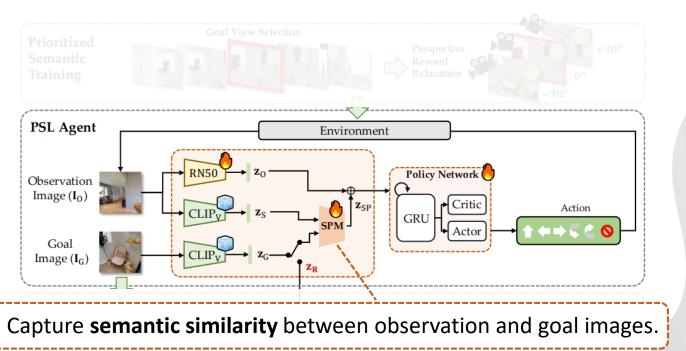
Method: Entropy-minimized Goal View Selection.



$$\omega^* = \underset{\omega \in \Omega}{\operatorname{arg\,min}} - \frac{1}{\log(|\mathcal{C}|)} \sum_{c \in \mathcal{C}} \mathbf{p}_c \log \mathbf{p}_c, \quad \mathbf{p}_c = \operatorname{softmax} \left(g(\mathbf{v}_w, \mathbf{q}_c) \right)$$
$$g(\mathbf{a}, \mathbf{b}) = \tau \cdot \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\|_2 \|\mathbf{b}\|_2}$$

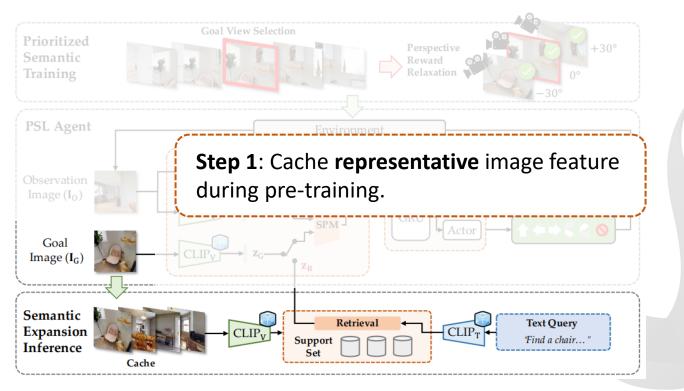
Step1: Selecting meaningful images from candidates.

Method: Perspective Reward Relaxation.

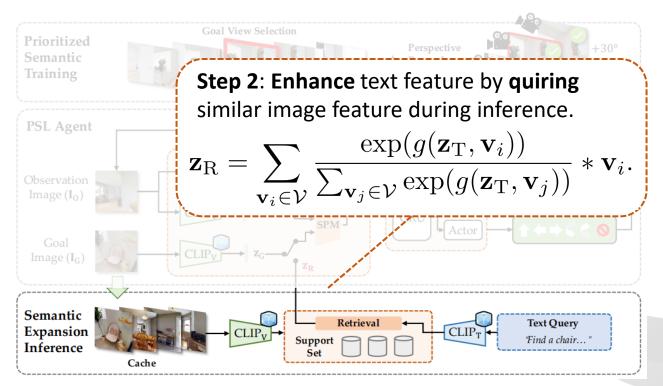


$$R_{t}^{\mathrm{PSL}} = \underbrace{\gamma^{suc} * \mathbb{1}\{d_{t} < \epsilon^{d}\}}_{reach \ the \ goal \ location \ or \ not} + \underbrace{\gamma^{suc} * \mathbb{1}\{d_{t} < \epsilon^{d}\} * \mathbb{1}\{(\operatorname{extract}_{\mathbf{Y}}(\mathbf{a}_{t}) < \epsilon^{a}\}}_{match \ the \ goal \ view \ or \ not} + \underbrace{r_{d}(d_{t}, d_{t-1}) + \mathbb{1}\{d_{t} < \epsilon^{d}\} * \operatorname{extract}_{\mathbf{Y}}(r_{a}(\mathbf{a}_{t}, \mathbf{a}_{t-1}))}_{closer \ to \ the \ goal \ or \ not} - \gamma^{delay},$$

Step2: Relaxing the agent from **pitch heading.**



Method: Semantic Perception Module.



Method: Semantic Expansion Inference Scheme

Method: Semantic Expansion Inference Scheme

Experiments on ObjectNav

Table 1: Comparison with state-of-the-art methods on the ObjectNav task. Our PSL surpasses both LLM-based and Mapping-based methods in terms of Success Rate (SR).

Method	with Mapping	with LLM	LLM	Extra Sensors	SR	SPL
L3MVN 62	V	✓	GPT-2	Depth, GPS	35.2	16.5
PixelNav 6	×	✓	GPT-4	-	37.9	20.5
ESC 64	✓	✓	GPT-3.5	Depth, GPS	39.2	22.3
CoW [11]	V	×	-	Depth, GPS	6.1	3.9
ProcTHOR 9	✓	×	-	Depth, GPS	13.2	7.7
ZSON 38	×	×	-	-	25.5	12.6
PSL (Ours)	×	X	-	-	42.4	19.2

We achieve SOTA on the **ObjectNav** task, even surpassing **LLM-based methods** in SR!

InstanceNav vs. ObjectNav

Specific Destination

"Chair" vs. "The bl ack leather chair."

Complex Instruction

Detailed description with attributes.

Intrinsic + Extrinsic

Experiments on InstanceNav

Table 2: Comparison with state-of-the-art methods in the text-goal track of the InstanceNav task. We report the baseline results based on the released code and models. [†]We perform evaluation with our proposed semantic expansion inference scheme.

Method	Backbone	with LLM	with Mapping	Extra Sensors	SR	SPL
CoW 11	ViT-Base	×	✓	Depth, GPS	1.8	1.1
GoW_64	ViT-Base	×	✓	Depth, GPS	7.2	4.2
ESC 64	ViT-Base	✓	✓	Depth, GPS	6.5	3.7
$OVRL^{\dagger}$ 58	ResNet-50	×	×	-	3.7	1.8
ZSON 38	ResNet-50	×	×	-	10.6	4.9
PSL (Ours)	ResNet-50	×	×	-	16.5	7.5

We achieve SOTA on the both tracks of **InstanceNav**, including **Text-goal track** and **Image-goal track**.

Experiments on InstanceNav

Table 3: Comparison with state-of-the-art methods in the image-goal track of the InstanceNav task. In this track, the "Supervised" mark means human labels on the objects are used. †We re-implement OVRL based on released pre-trained weight.

Method	Backbone	Supervised	Pre-training Data	SR	SPL
RL Agent 21	ResNet-18	V	-	8.3	3.5
OVRL-V2 57	ViT-Base	✓	Gibson	24.8	11.8
OVRL-V2 57	ViT-Base	×	Gibson	0.6	0.2
$OVRL^{\dagger}$ [58]	ResNet-50	×	HM3D	8.0	4.2
FGPrompt 56	ResNet-9	×	HM3D	9.9	2.8
ZSON 38	ResNet-50	×	HM3D	14.6	7.3
PSL (Ours)	ResNet-50	×	HM3D	23.0	11.4

We achieve SOTA on the both tracks of **InstanceNav**, including **Text-goal track** and **Image-goal track**.

Ablation Studies

Table 4: Ablation studies of different components in our Prioritized Semantic Learning (PSL) agent and Prioritized Semantic Training (PST) strategy under the Image-Goal setting of the InstanceNav task. The default entry is marked in gray . "SPM": Semantic Perception Module; "GVS": Goal View Selection; "PRR": Perspective Reward Selection.

	PSL PS		ST	ZSIN-	ZSIN-image ZSIN-text Z			ZSC	SON	
	$\overline{\mathrm{SPM}}$	GVS	PRR	SR	SPL	SR	SPL	SR	SPL	
ZSON	×	X	X	12.7	6.5	10.6	6.5	25.5	12.6	
	V	×	X	19.5	7.9	13.0	5.6	33.7	15.8	
\mathbf{PSL}	×	~	×	14.8	7.7	11.8	6.1	30.4	14.7	
(Ours)	~	~	×	16.5	6.5	12.3	5.7	35.0	18.1	
,	~	~	~	22.0	10.7	16.5	7.5	42.4	19.2	

All modules are crucial for our PSL agent.

Qualitative Results

Start Position Agent Position

Intrinsic Attributes:

The toilet in this image is white, and its seat appears to be yellowing.

Extrinsic Attributes:

In this image, there is a white toilet with a peeling lid and appears to be in a poor condition.

Intrinsic Attributes:

The bed in this image is white.

Extrinsic Attributes:

There are many paintings hanging on the wall around the bed.

Qualitative Results

Intrinsic Attributes:

The chair in this image is made of wood and has a brown color.

Extrinsic Attributes:

There are several chairs in the image, and one of them has a broken arm.

Intrinsic Attributes:

The chair is made of black wood and white leather.

Extrinsic Attributes:

The picture shows a rectangular black wooden dining table with white leather chairs.

Thank You!