

Overcome Modal Bias in Multi-modal Federated Learning via Balanced Modality Selection

Yunfeng Fan¹, Wenchao Xu^{1,*}, Haozhao Wang², Fushuo Huo, Jinyu Chen, and Song Guo³

¹PolyU, ²HUST, ³HKUST, E-mail: yunfeng.fan@connect.polyu.hk

2024/9/4

BMSFed-ECCV 2024

Overview

1. Introduction

2. Method

3. Results

4. Conclusion

Federated Learning (FL)

Collaboratively learn and aggregate knowledge from data that has been collected by, and resides on, a number of remote devices or servers.

Multi-modal Federated Learning (MFL)

Each client contains various types and numbers of modalities of data, making it challenging because of the intermodal interactions during the MFL training.

Observation:

The effectiveness of traditional client selection methods diminishes when dealing with clients with multi-modal data as the inter-modal interactions during MFL training are neglected. **Modality Imbalance**

Dataset	CI	REMA-D	[4]	AVE [33]		
Method	А	V	A-V	А	V	A-Y
Local	41.9	20.4	39.6	33.4	16.7	35.2
FedAvg	51,2	20.6	50.7	61.1	26.8	62.2
pow-d [6]	51.5	20.4	50.5	[-61.9]	26.9	$\bar{62.5}^{-}$
DivFL [3]	52.3	$\langle 21.1 \rangle$	51.7	62.7	25.3	63.3
FedAvg-0.2	50.6	28.6	52.4	60.6	29.6	63.4
FedAvg-0.5	50.5	34.6	55.7	58.7	30.0	60.7
FedAvg-0.8	48.1	50.9	61.2	56.4	31.8	58.5
BMSFed	51.0	41.9	64.5	59.7	40.2	64.7

Can we design a new selection scheme in MFL that can overcome the modal bias and exploit each modality comprehensively?

Observation:

The effectiveness of traditional client selection methods diminishes when dealing with clients with multi-modal data as the inter-modal interactions during MFL training are neglected.

						*
Dataset	CI	REMA-D	[4]			
Method	А	V	A-V	А	V	A-Y
Local	41.9	20.4	39.6	33.4	16.7	35.2
FedAvg	51,2	20.6	50.7	61.1	26.8	62.2
pow-d [6]	51.5	20.4	50.5	[-61.9]	26.9	$\bar{62.5}^{-}$
DivFL [3]	52.3	21.1	51.7	62.7	25.3	63.3
FedAvg-0.2	50.6	28.6	52.4	60.6	29.6	63.4
FedAvg-0.5	50.5	34.6	55.7	58.7	30.0	60.7
FedAvg-0.8	48.1	50.9	61.2	56.4	31.8	58.5
BMSFed	51.0	41.9	64.5	59.7	40.2	64.7

Can we design a new selection scheme in MFL that can overcome the modal bias and exploit each modality comprehensively?

Overview

1. Introduction

2. Method

3. Results

4. Conclusion

1. Local Imbalance Alleviation

Leverage class prototypes to calibrate the gradient directions to avoid the inter-modal interference, addressing the inadequate information exploitation on the local side.

Modal Enhancement (ME) Loss

$$\mathcal{L}_{ME}^{k}(v_{A}) = \mathbb{E}_{(x_{i}^{A}, y) \in \mathcal{D}_{k}} \log[\frac{\exp(-d(z_{i}^{A}, c_{y}^{GA}))}{\sum_{j=1}^{Y} \exp(-d(z_{i}^{A}, c_{j}^{GA}))}]$$

$$F_{k}(v_{A}, v_{I}) = \begin{cases} \mathcal{L}_{CE}^{k}(v_{A}, v_{I}) + \gamma^{k} \mathcal{L}_{ME}^{k}(v_{A}) & \rho_{I}^{k} \leq 1 \\ \mathcal{L}_{CE}^{k}(v_{A}, v_{I}) + \beta^{k} \mathcal{L}_{ME}^{k}(v_{I}) & \rho_{I}^{k} > 1 \end{cases}$$

where ρ_I^k is the imbalance ratio

2. Balanced Modality Selection

Assume modality *I* is weak, local loss for multi-modal and uni-modal clients is: multi-modal : $F_k(v_A, v_I) = \mathcal{L}_{CE}^k(v_A, v_I) + \beta^k \mathcal{L}_{ME}^k(v_I)$ uni-modal : $F_k(v_A) = \mathcal{L}_{CE}^k(v_A)$, $F_k(v_I) = \mathcal{L}_{CE}^k(v_I) + \beta^k \mathcal{L}_{ME}^k(v_I)$

Diverse client selection via submodularity:

$$\sum_{k \in [N]} \nabla F_k (v_A, v_I) = \sum_{k \in [N]} \begin{bmatrix} \nabla F_k (v_A, v_I) - \nabla F_{\sigma_M(k)} (v_A, v_I) \\ -\nabla F_{\sigma_A(k)} (v_A) - \nabla F_{\sigma_I(k)} (v_I) \end{bmatrix} \text{ where } \sigma_M, \sigma_A \text{ and } \sigma_I \text{ map } V \to S_M, S_A, S_I \\ + \sum_{k \in S_M} \gamma_k^M \nabla F_k (v_A, v_I) + \sum_{k \in S_A} \gamma_k^A \nabla F_k (v_A) + \sum_{k \in S_I} \gamma_k^I \nabla F_k (v_I) \end{bmatrix} S_M \cap S_A = S_A \cap S_I = S_M \cap S_I = \emptyset.$$

Since modality *I* is weak here, we omit the uni-A clients as the multi-modal gradient is dominated by modality A

Solve the two submodular functions with the stochastic greedy algorithm

- ▶ The type of selected client according to $G(S_M \cup S_I)$ should be specified;
- > The separated selection strategy pays less attention to the global modal bias

Conflict Resolution Strategy

$$S_{M} \leftarrow S_{M} \cup k_{1}^{*}, k_{1}^{*} \in \arg\max_{k \in \operatorname{rand}(V \setminus S_{M} \setminus S_{I}, s)} \left[\bar{G}(S_{M}) - \bar{G}(\{k\} \cup S_{M}) \right]$$

$$\begin{cases} if \ k_{1}^{*} = k_{2}^{*}, S_{M} \cup k_{2}^{*}; \\ if \ k_{1}^{*} \neq k_{2}^{*}, \begin{cases} S_{I} \cup k_{2}^{*}, if \ \rho_{I}^{k} > \chi \\ S_{I} \cup L^{*}, if \ \rho_{K}^{k} < \chi \end{cases} \end{cases}$$

$$k_{2}^{*} \in \underset{k \in \operatorname{rand}(V \setminus S_{M} \setminus S_{I}, s)}{\operatorname{arg\,max}} \left[\overline{G} \left(S_{M} \cup S_{I} \right) - \overline{G} \left(\{k\} \cup S_{M} \cup S_{I} \right) \right]$$

12

Overview

1. Introduction

2. Method

3. Results

4. Conclusion

Results

1. Performance Comparison to SOTA Baselines

CREMA-D AVE CG-MNIST ModelNet40 Dataset Method IID IID IID non-IID non-IID IID non-IID non-IID FedAvg 50.749.862.259.742.341.787.2 86.5FedProx 51.049.059.942.943.687.162.6 86.9 FedProto 58.751.587.254.061.758.851.487.5FedOGM 56.956.462.859.357.253.087.6 87.0 FedPMR 55.555.163.161.666.163.387.6 87.7 50.550.762.560.0 41.240.386.8 86.2pow-d DivFL 51.750.863.359.643.042.186.586.4 FedMSplit 51.687.4 52.460.843.550.987.562.4BMSFed 64.561.6 64.7 **62.1** 70.266.7 88.7 87.5

2. Uni-modal Performance Comparison

Dataset	CREMA-D				AVE			
Setting	IID		non-IID		IID		non-IID	
Method	A	V	А	V	A	V	A	V
FedAvg	51.2	20.6	50.7	20.2	61.1	26.8	61.4	26.4
FedProx	51.3	20.2	50.1	22.0	60.4	27.1	61.2	26.9
FedProto	50.2	35.3	48.6	39.1	55.7	36.8	59.7	32.8
FedOGM	50.5	35.7	48.8	30.2	58.7	28.8	59.4	29.4
FedPMR	51.5	38.7	50.1	35.9	61.7	<u>39.6</u>	61.7	35.3
pow-d	51.5	20.4	51.6	18.8	<u>61.9</u>	26.9	60.1	27.1
DivFL	52.3	21.1	52.1	22.7	62.7	25.3	61.6	26.3
FedMSplit	52.0	21.8	50.8	21.6	61.3	26.9	62.3	28.7
BMSFed	51.0	41.9	49.3	41.4	59.7	40.2	60.2	38.6

Thanks for your attention!