Robust Calibration of Large Vision-Language Adapters

Balamurali Murugesan, Julio Silva-Rodriguez, Ismail Ben Ayed, and Jose Dolz

Oct 2, 2024

Table of Contents

Introduction Motivation

Observation

Method

Formulation Solution

Results OOD Benchmarks

Conclusion

Motivation

- Deep learning is undergoing a paradigm shift with pre-trained large-scale language-vision models, such as CLIP [Rad+21].
- Adapters [Gao+24], Prompt Learning [Zho+22b], and TPT [Shu+22] methods have been developed to generalize for unseen related-domains.
- These methods have improved the discriminative performance of a zero-shot baseline, but calibration is significantly degraded.

Observation

- Recent literature [Wei+22] suggests that the miscalibration is caused by increasing the logit norm during training.
- We expose that the underlying cause of miscalibration is, in fact, the increase of the logit ranges instead of norm.

୬ < େ 4/10

Formulation

- For sample x, let y ∈ {0,1}^K be the ground truth vector, p be the softmax probability of logits l obtained from CLIP models.
- The logits used in training the main objective H(Y, P) are constrained to the range of its zero-shot prediction by the following constrained problem:

$$\begin{array}{ll} \text{minimize} & \mathcal{H}(\boldsymbol{Y},\boldsymbol{P}) \\ \text{subject to} & l_i^{\text{ZS-min}} \mathbf{1} \leq l_i \leq l_i^{\text{ZS-max}} \mathbf{1} & \forall i \in \mathcal{D} \end{array}$$

where I_i is the logit magnitude of sample x_i , and $I_i^{\text{ZS-min}}$ and $I_i^{\text{ZS-max}}$ are the min and max logit magnitudes of its zero-shot prediction.

Solution

Sample-adaptive logit scaling (SaLS)

$$\boldsymbol{I}'_{i} = \frac{(I^{\mathsf{ZS-max}}_{i} - I^{\mathsf{ZS-min}}_{i})}{(I^{\mathsf{max}}_{i} - I^{\mathsf{min}}_{i})}(\boldsymbol{I}_{i} - I^{\mathsf{min}}_{i}\boldsymbol{1}) + I^{\mathsf{ZS-min}}_{i}\boldsymbol{1}$$

where $I_i^{\max} = \max_j(I_{ij})$ and $I_i^{\min} = \min_j(I_{ij})$

Zero-shot logit normalization during training (ZS-Norm)

$$\mathcal{H}(\boldsymbol{Y}, \boldsymbol{P}) = -\sum_{i \in \mathcal{S}} \sum_{k=1}^{K} y_{ik} \log \frac{\exp{(l'_{ik})}}{\sum_{j=1}^{K} \exp{(l'_{ij})}}$$

Integrating explicit constraints in the objective (Penalty)

$$\min_{\boldsymbol{\theta}} \qquad \mathcal{H}(\boldsymbol{Y}, \boldsymbol{P}) + \lambda \sum_{i \in \mathcal{S}} \sum_{k=1}^{K} (\operatorname{ReLU}(I_{ik} - I_i^{\operatorname{ZS-max}}) + \operatorname{ReLU}(I_i^{\operatorname{ZS-min}} - I_{ik}))$$

Few-shot Prompt Learning and Adapters

Method	Avg.	OOD	Method	Avg.	OOD
	ACC	ECE		ACC	ECE
Zero-Shot [Rad+21]	40.62	7.18	Zero-Shot [Rad+21]	40.62	7.18
CoOp [Zho+22b]	40.86	10.97	CLIP-Ad [Gao+24]	34.07	15.45
w/ ZS-Norm	41.59 _(+0.73) †	$10.19_{(-0.78)}$	w/ ZS-Norm	30.06 _(−4.01) ↓	$21.27_{(+5.82)}$
w/ Penalty	41.87 _(+1.01)	8.06 _(−2.91) ↓	w/ Penalty	35.20 (+1.13)↑	$11.22_{(-4.23)}\downarrow$
w/ SaLS	40.86	7.82 (−3.15)↓	w/ SaLS	34.07	8.95 (−6.50)↓
CoCoOp [Zho+22a]	43.36	7.69	TIP-Ad(f) [Zha+21]	41.45	19.04
w/ ZS-Norm	43.70 _(+0.34) †	$7.12_{(-0.57)}$	w/ ZS-Norm	41.73 _(+0.28) ↑	$19.80_{(+0.76)}$
w/ Penalty	43.86 (+0.50)	6.15 (−1.54)↓	w/ Penalty	43.73 (+2.28)	$12.18_{(-6.86)}\downarrow$
w/ SaLS	43.36	6.82 _(−1.87) ↓	w/ SaLS	41.45	8.13 (−10.91)↓
ProGrad [Zhu+23]	42.32	7.66	TaskRes [Yu+23]	41.18	11.25
w/ ZS-Norm	42.21 _(+0.11) ↑	7.98 _(+0.32) ↑	w/ ZS-Norm	41.30 (+0.12)↑	9.07 _(−2.18) ↓
w/ Penalty	42.57 (+0.25)	6.84 _(−0.82) ↓	w/ Penalty	$41.29_{(+0.11)}$	$10.62_{(-0.63)}$
w/ SaLS	42.32	6.90 _(−0.76) ↓	w/ SaLS	41.18	9.03 _(−2.22) ↓

Test-time Prompt Tuning

		Avg.	INet	CAL	PET	CAR	FLW	FOO	AIR	SUN	DTD	SAT	UCF
ACC	Zero-shot [Rad+21]	56.03	58.17	85.68	83.62	55.75	61.67	73.96	15.69	58.82	40.43	23.69	58.90
	TPT [Shu+22]	58.03	60.74	87.22	84.49	58.36	62.81	74.97	17.58	61.17	42.08	28.40	60.61
	w/ ZS-Norm	57.94	60.69	87.38	84.41	58.45	62.12	75.01	17.13	61.09	41.96	28.53	60.59
	w/ Penalty	57.69	60.74	87.06	84.30	58.13	61.84	75.17	17.22	61.11	42.02	26.60	60.35
	w/ SaLS	58.03	60.74	87.22	84.49	58.36	62.81	74.97	17.58	61.17	42.08	28.40	60.61
	C-TPT [Yoo+24]	57.54	60.02	87.18	83.65	56.41	64.80	74.89	16.62	60.72	41.55	27.06	60.01
	w/ ZS-Norm	57.63	60.00	87.06	83.65	56.57	65.04	74.82	16.86	60.58	41.61	27.51	60.27
	w/ Penalty	57.52	60.06	86.94	83.51	56.78	64.76	74.88	16.29	60.67	41.90	26.63	60.32
	w/ SaLS	57.54	60.02	87.18	83.65	56.41	64.80	74.89	16.62	60.72	41.55	27.06	60.01
ECE	Zero-shot [Rad+21]	5.04	1.90	3.56	5.64	4.17	2.10	2.35	6.31	3.79	8.60	14.40	2.66
	TPT [Shu+22]	11.27	11.34	4.10	3.78	3.70	13.66	5.18	15.57	9.20	25.29	21.00	11.20
	w/ ZS-Norm	10.57	10.81	4.29	3.71	3.62	13.29	4.73	15.28	8.50	23.95	17.61	10.49
	w/ Penalty	9.58	11.31	3.99	1.57	2.26	13.94	4.27	14.51	8.88	23.10	11.82	9.78
	w/ SaLS	9.26	9.81	4.45	2.90	2.50	12.01	3.91	15.23	8.64	21.09	12.31	9.05
	C-TPT [Yoo+24]	6.33	3.05	2.60	2.46	0.87	3.91	1.62	11.30	2.73	21.38	13.58	2.88
	w/ ZS-Norm	5.74	2.85	2.29	2.69	0.78	3.53	1.61	10.94	2.72	20.94	12.17	2.65
	w/ Penalty	3.14	5.93	2.26	2.66	0.81	3.79	1.64	11.58	2.74	20.49	10.83	2.51
	w/ SaLS	5.22	2.21	3.41	3.94	2.55	1.75	1.78	10.15	2.58	12.92	10.41	2.71

Reliability plots

Conclusion

- We show that the underlying cause of miscalibration in adaptation is with the increase of logit ranges.
- We provide two solutions (normalization, penalty) during training and an unsupervised scaling during inference time to constrain the logit range based on the zero-shot logits.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○ 10/10

 Our solutions reduce miscalibration error in popular OOD classification benchmarks for adapters, prompt learning, and test-time prompt tuning. [Gao+24] Peng Gao et al. "CLIP-Adapter: Better Vision-Language Models with Feature Adapters". In: International Journal of Computer Vision (IJCV) (2024).

- [Rad+21] Alec Radford et al. "Learning transferable visual models from natural language supervision". In: International conference on machine learning. PMLR. 2021, pp. 8748–8763.
- [Shu+22] Manli Shu et al. "Test-time prompt tuning for zero-shot generalization in vision-language models". In: Advances in Neural Information Processing Systems (NeurIPS) 35 (2022), pp. 14274–14289.
- [Wei+22] Hongxin Wei et al. "Mitigating neural network overconfidence with logit normalization". In: International Conference on Machine Learning (ICML). PMLR. 2022, pp. 23631–23644.
- [Yoo+24] Hee Suk Yoon et al. "C-TPT: Calibrated Test-Time Prompt Tuning for Vision-Language Models via Text Feature Dispersion". In: International Conference on Learning Representations (ICLR). 2024.

- [Yu+23] Tao Yu et al. "Task Residual for Tuning Vision-Language Models". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2023, pp. 10899–10909.
- [Zha+21] Renrui Zhang et al. "Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling". In: CoRR abs/2111.03930 (2021). arXiv: 2111.03930.
- [Zho+22a] Kaiyang Zhou et al. "Conditional Prompt Learning for Vision-Language Models". In: *CVPR*. 2022.
- [Zho+22b] Kaiyang Zhou et al. "Learning to Prompt for Vision-Language Models". In: International Journal of Computer Vision (IJCV) (2022).
- [Zhu+23] Beier Zhu et al. "Prompt-aligned gradient for prompt tuning". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2023, pp. 15659–15669.