

An Information Theoretical View for Out-Of-Distribution Detection

Jinjing Hu^{1,2}, Wenrui Liu^{2,3}, Hong Chang^{2,3}, Bingpeng Ma³, Shiguang Shan^{2,3}, Xilin Chen^{2,3}

¹ShanghaiTech University, China ²Key Laboratory of AI Safety of CAS, Institute of Computing Technology, Chinese Academy of Sciences (CAS) ³University of Chinese Academy of Sciences

Out-Of-Distribution Detection

In-Distribution(ID)

Out-Of-Distribution(OOD)

Out-Of-Distribution(OOD) inputs: samples from an **unknown distribution** that the network has not been exposed to during training phase

Out-Of-Distribution Detection

Testing Pipeline

Representation Learning Method: learning discriminative feature representation between IDs and OODs.

Information Theory

>Information Bottleneck Theory:

 $\mathcal{L} = I(Z; X) - \beta I(Z; Y)$

Illustration: information relationship between inputs, features, classification and OOD detection.

Our Propositions

Proposition 1. (Over-confidence due to maximizing U_c) Maximizing the mutual information U_c exclusively on ID training data according to Information Bottleneck Theory leads to over-confidence on known classes.

 $H(Y|Z) \ge H(Y, t = \text{in}|Z) + H(Y, t = \text{out}|Z)$

Proposition 2. (Compression of U_d due to optimizing Information Bottleneck theory) Optimizing the classification objective leads to the compression of classirrelevant detection-relevant information in the representation. Formally, let Z_{min} be the representation variable obtained by optimizing classification objective until convergence. $\forall \epsilon > 0$, we have

 $I(Z_{min}; T|Y) \le I(Z_{\epsilon}; T|Y).$

ID classification training formulation can lead to: Over-confidence on Known Classes (Proposition 1) Compression of Detection-relevant Information (Proposition 2)

OER Learning Method

> Training Procedure:

$$\begin{aligned} \mathbf{L}_{\text{cls}} &= -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(\mathbf{z}_{i}^{\top} \boldsymbol{\mu}_{c} / \tau)}{\sum_{j=1}^{C} \exp(\mathbf{z}_{i}^{\top} \boldsymbol{\mu}_{j} / \tau)} \\ \mathbf{L}_{\text{rbf}} &= \frac{1}{N} \sum_{i=1}^{N} \sum_{l} \lambda_{l} \log \sum_{j \neq i} e^{\|f^{l}(\mathbf{x}_{i}) - f^{l}(\mathbf{x}_{j})\|_{2}^{2}} \\ \mathbf{L}_{\text{vmf}} &= \frac{1}{C} \sum_{i=1}^{C} \log \sum_{j \neq i} e^{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}} \\ \mathbf{L}_{\text{rec}} &= \frac{1}{N} \sum_{i=1}^{N} \sum_{l} \left[\|g^{l}(f(\mathbf{x}_{i})) - f^{l}(\mathbf{x}_{i})\|_{2}^{2} \right] \end{aligned}$$

I

1

> Inference Procedure:

$$\mathrm{KNN}(\mathbf{z}) = ||\mathbf{z} - \mathbf{z}_{(k)}||_2,$$

Experiments

□ Main Results

Table 1: OOD detection and ID classification performance on CIFAR-100 (ID) with ResNet-34. \downarrow means smaller values are better and \uparrow means larger values are better. **Bold** numbers indicate superior results.

Method	SVHN		Places365		LSUN		iSUN		Textures		Average		
	$\mathbf{FPR}\downarrow$	$\mathbf{AUC}\uparrow$	$\mathbf{FPR}{\downarrow}$	$\mathbf{AUC} \uparrow$	$\mathbf{FPR}\!\!\downarrow$	$\mathbf{AUC}\uparrow$	$\mathbf{FPR}\!\!\downarrow$	$\mathbf{AUC}\uparrow$	$\mathbf{FPR}{\downarrow}$	$\mathbf{AUC}\uparrow$	$\mathbf{FPR}{\downarrow}$	$\mathbf{AUC}\uparrow$	$\mathbf{ACC}\uparrow$
MSP	45.2	90.3	84.6	71.8	84.0	74.2	85.7	73.9	81.7	73.2	76.2	76.8	70.3
ODIN	7.8	98.6	79.7	77.3	47.9	92.3	77.3	82.5	70.5	82.5	56.6	86.6	70.3
Maha	87.6	80.7	84.1	73.1	84.3	79.2	84.1	78.7	61.7	84.4	80.3	79.2	70.3
Energy	75.8	77.5	79.1	77.4	41.6	93.1	76.2	82.7	68.3	82.9	68.2	82.7	70.3
DICE	43.7	97.2	85.0	75.9	43.7	95.7	75.2	80.9	75.0	89.8	64.5	87.9	70.3
VOS	77.4	74.1	80.8	74.5	75.6	82.6	68.3	85.4	61.5	85.3	72.8	80.3	74.3
SSD+	40.4	94.1	79.8	78.9	50.9	91.7	81.1	83.3	54.6	89.6	61.4	87.3	75.9
KNN+	45.7	91.1	79.5	79.3	48.5	91.0	77.4	82.4	53.5	88.8	60.9	86.1	75.9
NPOS	15.4	96.8	79.3	71.3	43.2	87.4	47.7	86.4	45.2	89.4	46.1	86.2	75.5
CIDER	16.1	97.6	78.3	75.1	17.1	96.2	49.5	89.2	36.4	92.0	39.4	90.0	75.1
OER	6.1	98.3	80.3	70.9	14.9	96.1	23.2	95.9	17.8	95.1	28.4	91.2	74.6

□ Ablation of Regularization Losses

Table 2: Ablation of proposed loss functions on different ID datasets.

$\mathcal{L}_{\mathrm{cls}}$	т	$L_{\rm rec}$	L_{rbf}	CIFA	R-100	ImageNet-100		
	L_{vmf}			$\mathbf{FPR95}{\downarrow}$	AUROC ↑	FPR95↓	AUROC↑	
\checkmark				60.8	85.3	54.8	88.0	
\checkmark	\checkmark			39.4	90.0	51.3	88.4	
\checkmark	\checkmark	\checkmark		34.7	90.5	51.1	88.6	
\checkmark	\checkmark		\checkmark	38.4	90.2	46.2	90.4	
\checkmark	\checkmark	\checkmark	\checkmark	28.4	91.2	43.7	90.9	

Visualizations

T-SNE Visualization of Feature Distribution

□ Visualization of OOD Score Distribution

OER Enhances the **Separability** between IDs and OODs.

Conclusion

ID classification formulation can lead to over-confidence and undesired compression of OOD detection-relevant information.

- OER could decrease model's confidence based on temperature coefficient tuning, and increase the mutual information between feature representation and potential OODs.
- OER could effectively enhance OOD detection without compromising ID classification accuracy.