

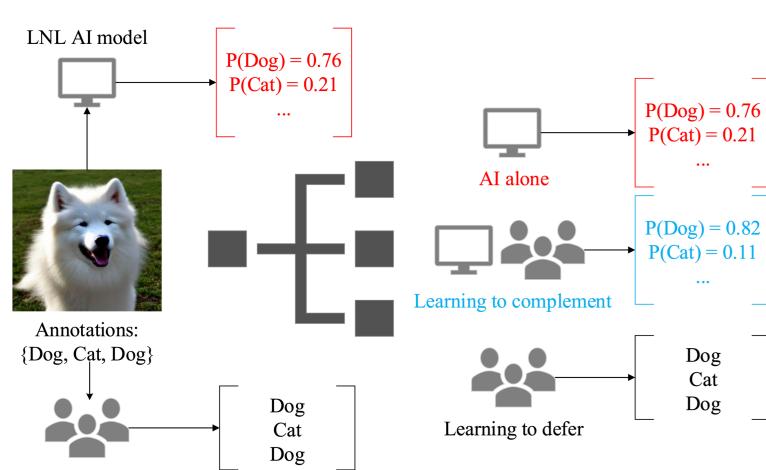
## Learning to Complement and to Defer to Multiple Users

Zheng Zhang<sup>1</sup>, Wenjie Ai<sup>1</sup>, Kevin Wells<sup>1</sup>, David Rosewarne<sup>1,2</sup>, Thanh-Toan Do<sup>3</sup>, Gustavo Carneiro<sup>1</sup>



The Royal Wolverhampton
NHS Trust




<sup>1</sup>Centre for Vision, Speech and Signal Processing, University of Surrey & <sup>2</sup>Royal Wolverhampton Hospitals NHS Trust & <sup>3</sup>Department of Data Science and AI, Monash University

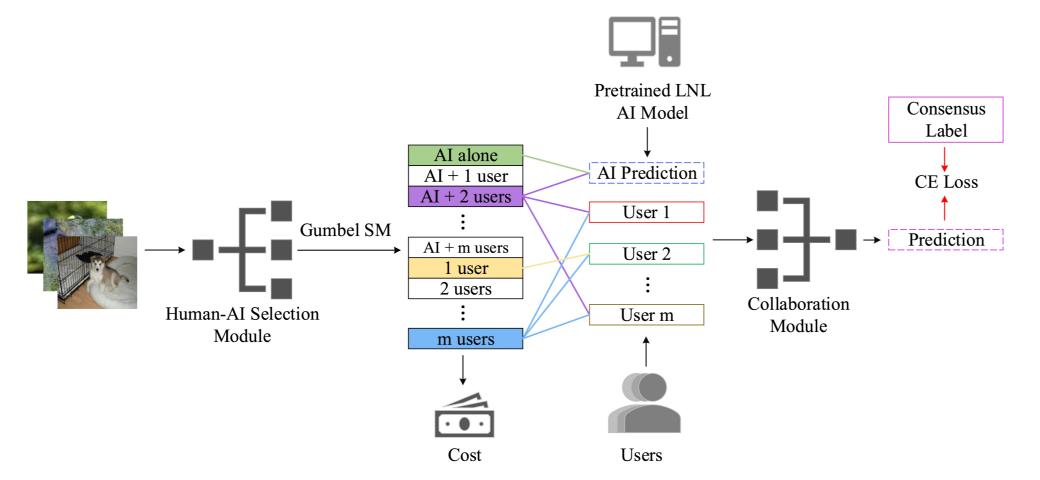
#### **Motivation**

Human-AI Collaboration in Classification (**HAI-CC**) has three options:

- \* AI autonomously classifies
- \* AI collaborates with users
- \* AI defers to users

These options have been studied isolation rather than as components of a unified system.

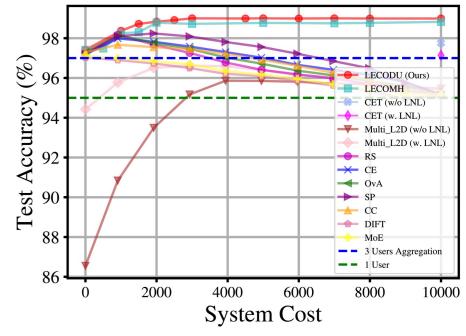



# Contribution

- LECODU features a selection module and a collaboration module that combines learning-to-defer and learning-to-complement strategies
- A new training algorithm that leverages a training set containing multiple noisy labels per image to minimise the costs and maximise the accuracy

### Methodology

LECODU is designed to make three decisions:


- \* When to collaborate with experts
- \* When to defer to experts
- \* How many experts should be engaged in the decision process



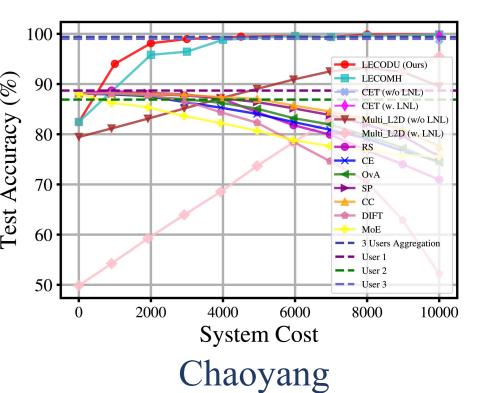
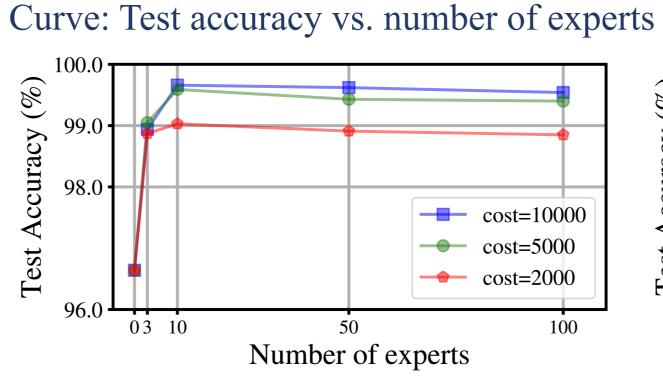
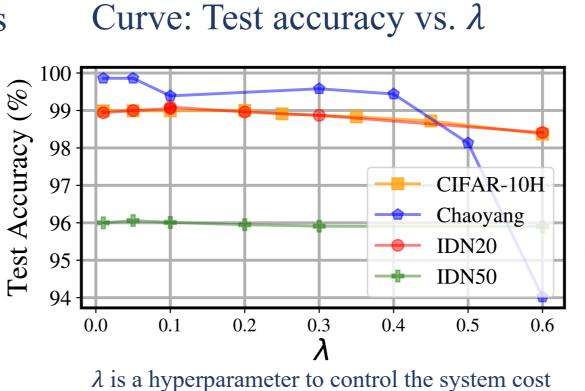
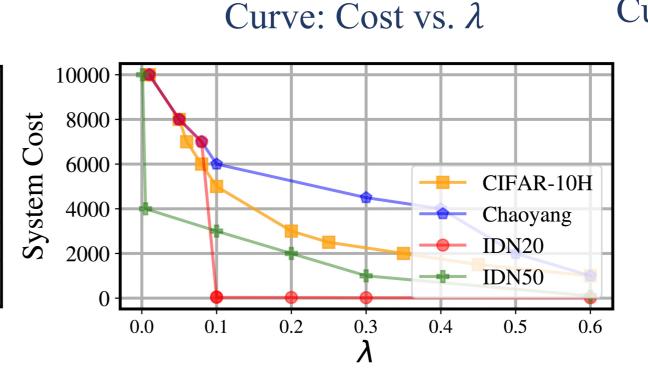

## **Experiments**

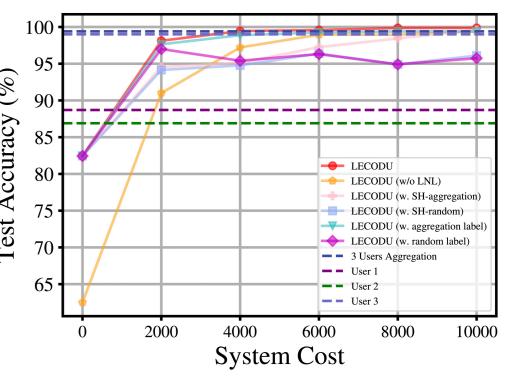
Table & Curve: Test accuracy (%) vs. collaboration cost


|           | Cost  | Methods |       |       |       |       |       |       |       |        |                  |        |
|-----------|-------|---------|-------|-------|-------|-------|-------|-------|-------|--------|------------------|--------|
|           |       | RS      | MoE   | LCE   | OvA   | SP    | CC    | DIFT  | CET   | Multi_ | L2D LECOMH       | LECODU |
| CIFAR-10H | 2000  | 97.68   | 96.84 | 97.82 | 97.76 | 98.24 | 97.55 | 96.82 | -     | 96.5   | 98.78            | 98.83  |
|           | 4000  | 96.78   | 96.34 | 97.33 | 97.03 | 97.81 | 97.21 | 96.38 | -     | 96.59  | 98.72            | 99.00  |
|           | 6000  | 96.18   | 95.96 | 96.90 | 96.37 | 97.22 | 96.78 | 96.11 | -     | 96.14  | 98.77            | 99.00  |
|           | 10000 | 95.17   | 95.17 | 95.17 | 95.17 | 95.17 | 95.17 | 95.17 | 97.76 | 95.46  | 98.82            | 98.99  |
| IDN20     | 2000  | 95.85   | 90.10 | 95.83 | 96.06 | 97.53 | 95.43 | 92.56 | -     | 95.08  | 98.25            | 98.87  |
|           | 4000  | 91.66   | 87.10 | 91.82 | 91.83 | 97.13 | 91.47 | 88.55 | -     | 91.59  | 98.81            | 99.09  |
|           | 6000  | 87.79   | 84.36 | 87.54 | 87.77 | 96.04 | 87.67 | 86.28 | -     | 87.52  | 98.60            | 99.05  |
|           | 10000 | 79.85   | 79.84 | 79.85 | 79.85 | 79.85 | 79.85 | 79.85 | 96.13 | 79.63  | $1 \qquad 98.45$ | 98.94  |
| IDN30     | 2000  | 94.00   | 88.8  | 94.01 | 94.31 | 96.97 | 92.92 | 90.45 | -     | 92.62  | 96.96            | 97.42  |
|           | 4000  | 88.16   | 83.31 | 88.13 | 88.16 | 95.26 | 86.94 | 84.79 | -     | 87.15  | 96.93            | 97.92  |
|           | 6000  | 81.95   | 78.20 | 88.16 | 82.06 | 92.63 | 81.37 | 79.60 | -     | 81.25  | 96.96            | 97.92  |
|           | 10000 | 70.33   | 70.34 | 70.34 | 70.34 | 70.34 | 70.34 | 70.34 | 96.52 | 70.39  | 97.31            | 98.20  |
| IDN40     | 2000  | 91.75   | 88.17 | 91.54 | 91.81 | 94.90 | 91.12 | 87.99 | -     | 90.29  | 96.34            | 96.80  |
|           | 4000  | 84.10   | 80.29 | 83.95 | 84.28 | 90.69 | 83.17 | 80.41 | -     | 82.7'  | 7 96.51          | 97.14  |
|           | 6000  | 76.43   | 72.48 | 76.18 | 76.29 | 85.00 | 75.45 | 74.17 | -     | 75.25  | 96.64            | 97.37  |
|           | 10000 | 60.67   | 60.67 | 60.67 | 60.67 | 60.67 | 60.67 | 60.67 | 95.76 | 60.43  | $1 \qquad 96.74$ | 97.31  |
| IDN50     | 2000  | 89.69   | 79.55 | 89.21 | 89.75 | 92.68 | 87.59 | 85.6  | -     | 87.5   | 5 95.77          | 95.95  |
|           | 4000  | 79.64   | 72.07 | 79.41 | 80.00 | 86.28 | 78.13 | 75.95 | -     | 78.40  | 95.91            | 96.06  |
|           | 6000  | 69.53   | 64.27 | 69.39 | 69.53 | 78.92 | 68.58 | 68.02 | -     | 68.94  | 96.07            | 96.07  |
|           | 10000 | 50.03   | 50.03 | 50.03 | 50.03 | 50.03 | 50.03 | 50.03 | 95.18 | 50.1'  | 96.17            | 96.12  |
| Chaoyang  | 2000  | 87.00   | 81.11 | 86.86 | 86.76 | 87.47 | 87.79 | 64.04 | -     | 75.60  | 95.82            | 98.13  |
|           | 4000  | 91.67   | 83.31 | 90.60 | 91.25 | 92.05 | 92.09 | 74.71 | -     | 84.18  | 98.82            | 99.44  |
|           | 6000  | 92.75   | 85.60 | 93.50 | 93.55 | 93.31 | 93.45 | 81.81 | -     | 90.74  | 99.58            | 99.86  |
|           | 10000 | 92.89   | 92.89 | 92.89 | 92.89 | 92.89 | 92.89 | 92.89 | 99.58 | 99.76  | 99.86            | 99.86  |





CIFAR-10H




#### **Ablation Studies**







#### Curve: ablation for LNL, MRL and HAI-CC

