WED-AM-3-6262

EUROPEAN CONFERENCE ON COMPUTER VISION

M I L A N O

Personalized Federated Domain-Incremental Learning based on Adaptive Knowledge Matching

<u>Yichen Li¹</u>, Wenchao Xu², Haozhao Wang¹, Yining Qi¹, Jingcai Guo², Ruixuan Li¹

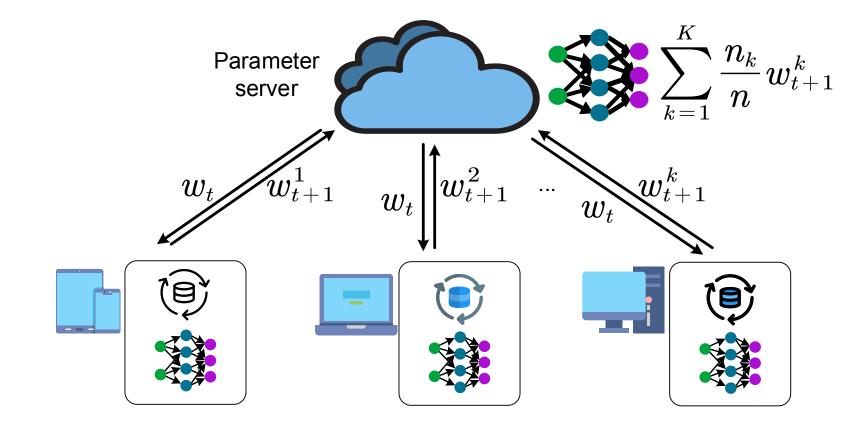
¹Huazhong University of Science and Technology, Wuhan, China

²The Hong Kong Polytechnic University, Hongkong, China

Federated Incremental Learning

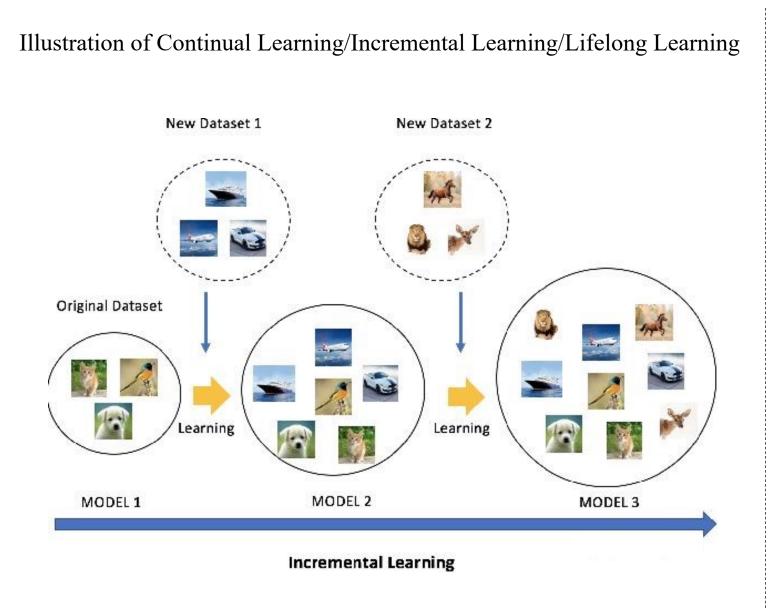
I. Background
II. Motivations
III.Methodology
IV.Experimental Results
V.Conclusion

Background: Federated Learning



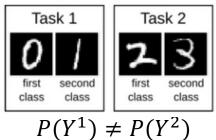
FedAvg: <u>Global model</u> is obtained by <u>computing the</u> <u>average</u> of <u>parameters</u> of multiple local models

Background: Incremental Learning



Three Typical Scenarios

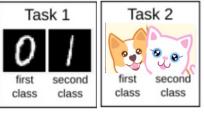
• Class-Incremental Learning



Domain-Incremental Learning

 $P(X^1) \neq P(X^2)$

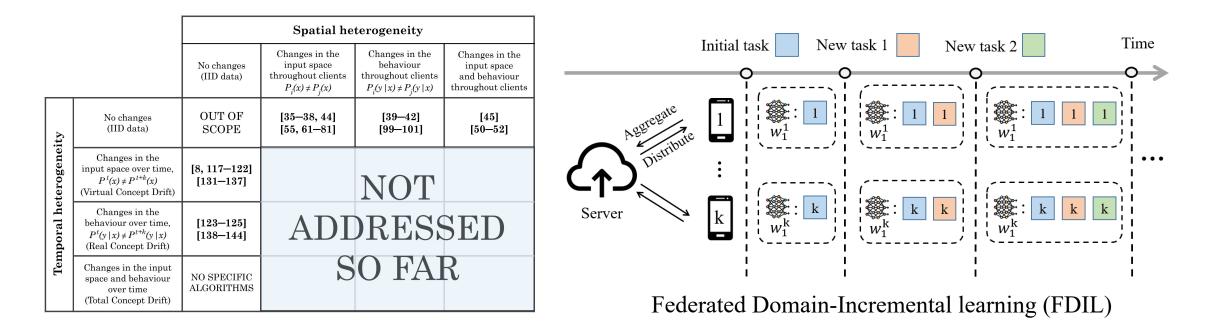
Task-Incremental Learning



 $P(Y^1) \neq \overline{P(Y^2), P(X^1)} \neq P(X^2), |Y^1| \neq |Y^2|$

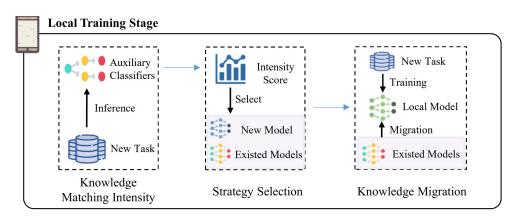
Catastrophic Forgetting: clients are difficult to learn new data while retaining previous information.
 > especially when data is non-identically and independently distributed (Non-IID) across clients.

Domain Shift: existing FIL methods only focus on the label information in class-incremental tasks.
 Fail to work with domain shifts between incremental tasks.



Methodology: pFedDIL

- How to discern the similar knowledge between domain-incremental tasks?
- How to transfer the shared knowledge?



Step 1. Knowledge Matching $\tilde{\rho}^k = \frac{1}{N^{t+1}} \sum_{i=1}^{N^{t+1}} f(x_i^{t+1}; \tilde{\theta}^k).$ auxiliary classifier $\tilde{\theta}^k = [\theta_1^k, \theta_2^k, \dots, \theta_d^k]$

Step 2. Strategy Selection

$$w_{t+1}^{k} = OPT \begin{cases} \hat{w} & \text{if } \max(\widetilde{\rho}_{k}) < \lambda \\ \widetilde{w}^{k}[m] & \text{else } \max(\widetilde{\rho}_{k}) = \rho_{k}^{m} \\ \geq \lambda . \end{cases}$$

Step 3. Knowledge Migration $\min_{w_{t+1}^k} \mathcal{L}_{Local}^k(w_{t+1}^k) = \mathcal{L}_{(t+1)}^k(w_{t+1}^k) + \mathcal{L}_{KM}^k(w_{t+1}^k),$ where $\mathcal{L}_{KM}^k(w_{t+1}^k) = \widetilde{\rho}_k \cdot ||w_{t+1}^k - \widetilde{w}^k||^2 = \sum_{i=1}^d \rho^i \cdot ||w_{t+1}^k - w_i^k||^2.$

Alg	orithm 1: pFedDIL
In	put : T : the communication round; K : client number;
	C: the fraction of active client in each round;
	$\{\mathcal{T}_{(t)}\}_{t=1}^{n}$: the distributed dataset with n tasks;
	w: the parameter of the target classification model;
	θ : the parameter of the auxiliary classifier.
1 In	itialize the parameter w and θ ;
2 fo	$\mathbf{r} \ t = 1 \ to \ T \ \mathbf{do}$
3	$S_t \leftarrow \text{(random set of } [C \cdot K] \text{ clients}\text{); for each selected client } k \in S_t$
4	receives w_t from the server;
5	calculate knowledge matching intensity $\tilde{\rho}^k$ with (2);
6	select learning strategy w_{t+1}^k with (4);
7	set local models w_{t+1}^k and θ_{t+1}^k ;
8	for $e = 1$ to E do
9	update θ_{t+1}^k with (3);
10	update w_{t+1}^{k} through adaptive knowledge migration with (5);
11	end
12	pushes w_{t+1}^k to the server.
13	end
14	$w_t \leftarrow \text{ServerAggregation}(\{w^k\}_{k \in S_t})$
15 en	ıd

Datasets: Digit10、Office31、DomainNet

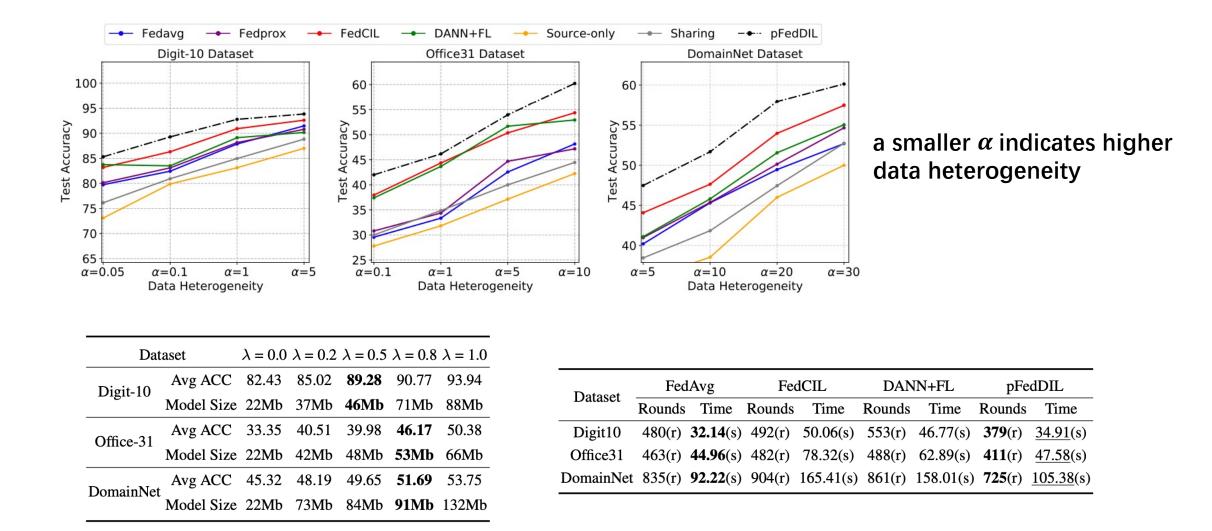
Baselines: FedAvg, FedProx, FedCIL, DANN+FL, Source-Only, Sharing

Test Accuracy & Ablation Study

		Office-31 ($\lambda = 0.8$)							DomainNet ($\lambda = 0.8$)														
Method	$MNIST \rightarrow E$	EMNIST	\rightarrow USPS -	\rightarrow SVHN	Avg	$\varDelta(\uparrow)$	Amazon	\rightarrow Dlsr	$\rightarrow V$	Webcam	Avg	$\Delta(\uparrow)$	Clipart	\rightarrow Infog	graph -	\rightarrow Pair	ting \rightarrow	Quickdra	$w \rightarrow F$	Real \rightarrow	Sketch	Avg	$\Delta(\uparrow)$
FedAvg [24]	92.82 \rightarrow	84.02	\rightarrow 81.02 -	→ 71.87	82.43	6.85↑	46.53	$\rightarrow 24.17$	\rightarrow	29.34	33.35	12.82↑	48.43	\rightarrow 37	.18 -	\rightarrow 45	$.80 \rightarrow$	45.32	$\rightarrow 4$	4.91 →	50.25	45.32	6.38↑
FedProx [19]	93.01 →	84.68	\rightarrow 78.30 -	→ 76.42	83.10	6.18↑	45.19	$\rightarrow 25.68$	\rightarrow	32.23	34.37	11.80↑	47.39	\rightarrow 38	.43 -	\rightarrow 44	$.31 \rightarrow$	47.96	$\rightarrow 4$	$2.38 \rightarrow$	51.77	45.37	6.32↑
FedCIL [28]	94.64 \rightarrow	87.52	\rightarrow 82.16 -	$\rightarrow 80.92$	86.31	2.97↑	49.38	\rightarrow 39.65	\rightarrow	44.04	44.36	$1.81\uparrow$	52.14	\rightarrow 43	.68 -	→ 47	$10 \rightarrow$	48.75	$\rightarrow 4$	$2.89 \rightarrow$	51.26	47.64	4.05↑
DANN [10] + FL	96.07 \rightarrow	86.71	\rightarrow 79.11 -	→ 72.14	83.51	5.77↑	51.97	\rightarrow 35.96	\rightarrow	43.08	43.67	2.50↑	50.07	\rightarrow 39	.74 -	\rightarrow 43	.73 →	45.08	$\rightarrow 4$	$3.28 \rightarrow$	52.96	45.81	5.88↑
Source-Only	92.82 \rightarrow	82.15	\rightarrow 75.53 -	→ 69.06	79.89	9.39↑	46.53	ightarrow 20.61	\rightarrow	28.32	31.82	14.35↑	48.43	\rightarrow 31	.01 -	→ 33	$12 \rightarrow$	38.15	$\rightarrow 3^{\prime}$	$7.62 \rightarrow$	42.85	38.53	13.16↑
Sharing	92.67 \rightarrow	82.91	\rightarrow 76.17 -	→ 71.96	80.93	8.35↑	46.11	\rightarrow 24.23	\rightarrow	34.25	34.86	11.31↑	48.43	\rightarrow 36	5.03 -	→ 39	.58 \rightarrow	41.80	$\rightarrow 4$	$0.41 \rightarrow$	44.76	41.84	9.86 ↑
pFedDIL -w/o Migration	92.82 \rightarrow	87.09	\rightarrow 84.00 -	→ 81.89	86.45	2.83↑	46.53	$\rightarrow 40.17$	\rightarrow	44.55	43.75	2.42↑	48.43	\rightarrow 43	.83 -	\rightarrow 50	$.05 \rightarrow$	49.44	$\rightarrow 4$	$6.10 \rightarrow$	54.90	48.79	2.90↑
pFedDIL -w/o Sharing	92.79 \rightarrow	90.13	ightarrow 87.59 -	→ 86.19	89.18	0.11↑	46.63	$\rightarrow 42.90$	\rightarrow	47.03	45.52	0.65↑	48.52	\rightarrow 47	.37 -	→ 5 1	$16 \rightarrow$	53.98	$\rightarrow 5$	$0.11 \rightarrow$	55.24	51.06	0.63↑
pFedDIL -w/o Correlation	92.82 \rightarrow	89.06	\rightarrow 84.72 -	→ 84.30	87.73	1.55↑	46.53	$\rightarrow 41.66$	\rightarrow	47.19	45.13	1.04↑	48.43	\rightarrow 46	5.71 -	\rightarrow 51	$.09 \rightarrow$	52.34	$\rightarrow 4$	$8.07 \rightarrow$	56.95	50.60	1.09↑
pFedDIL	92.82 \rightarrow	90.39	\rightarrow 87.14 -	→ 86.75	89.28	1	46.53	ightarrow 43.87	\rightarrow	48.12	46.17	/	48.43	\rightarrow 47	'.19 -	\rightarrow 52	.48 →	54.07	\rightarrow 5	$0.36 \rightarrow$	57.61	51.69	/
Upper Bound -Disjoint	92.82 \rightarrow	90.33	\rightarrow 93.41 -	→ 87.97	91.13	1.85↓	46.53	$\rightarrow 50.17$	\rightarrow	56.21	50.97	4.80↓	48.43	\rightarrow 52	.33 -	→ 54	$.21 \rightarrow$	52.89	$\rightarrow 5$	$3.62 \rightarrow$	58.06	53.26	1.57↓

Experiments - Performance Overview

Parameter Sensitivity & Communication Efficiency



In this paper, we seek to tackle the catastrophic forgetting in the FDIL scenario.

We propose a personalized federated domain-incremental learning approach based on adaptive knowledge matching, named pFedDIL. We leverage the auxiliary classifier to calculate the knowledge-matching intensity for the incremental task-learning strategy selection and knowledge migration. Furthermore, we propose sharing partial parameters between the target classification model and the auxiliary classifier to condense model parameters.

Our extensive experiments across various settings and baselines validate the effectiveness of pFedDIL, making it a robust solution for federated domain-incremental learning.

EUROPEAN CONFERENCE ON COMPUTER VISION

M I L A N O

Thank You

Yichen LiPh.D. candidate2023 - presentSchool of Computer Science and TechnologyHuazhong University of Science and Technology

Research Interest:

Federated Learning LLM Edge-Cloud Recommendation System Software Engineering

Welcome to Collaborate!

 Towards Efficient Replay in Federated Incremental Learning, CVPR2024
 DaFKD: Domain-aware Federated Knowledge Distillation, CVPR2023
 FedCDA: Federated Learning with Cross-rounds Divergence-aware Aggregation, ICLR2024
 SR-FDIL: Synergistic Replay for Federated Domain-Incremental Learning, IEEE TPDS2024