--- : mixing statistics domains

*Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc

EUROPEAN CONFERENCE ON COMPUTER VISION MILANO

Introduction

- Federated domain generalization (Federated DG) aims to improve a federated model's ability to manage various distributed source domains while ensuring reliable generalization to unseen domains
- > Challenges
 - > **Domain shift:** local models are trained on limited domains
 - Aggregating local models trained on own limited domain can lead to a significant degradation in a global model performance

Limitations of previous research

- \succ FL models overfit to local domains, causing aggregation issues.
- \succ Single-source DG underutilizes the rich server information inherent in FL, leading to suboptimal performance
- Multi-source DG necessitates sharing elements of local models amongst clients, causing privacy issue

Motivation

Feature diversification with global model

- Local model relies on CE loss from single domain, which lead to overfitting to single domain
- \succ The model can learn client invariant features with diverse clients' data, but it poses privacy issue
- \succ Instead, we augment local data with global BN statistics from the server, which reflects the feature statistics across all clients

Feature adaptation with test instance

- At test time, it can be difficult to generalize to completely unseen domains where the data distribution has shifted from the training set
- Using the statistics of the test input can reduce the domain gap between the test and training

Feature Diversification and Adaptation for Federated Domain Generalization Seunghan Yang, Seokeon Choi, Hyunsin Park, Sungha Choi, Simyung Chang, Sungrack Yun Qualcomm AI Research*

Federated Feature Diversification

- Normalize inputs with a mix of statistics-exploiting global and local BN statistics concurrently
- > Augmented feature $f_{i,\Delta}$ is obtained with $\{\mu_{\Delta}^{l}, \sigma_{\Delta}^{l}\}_{l=1}^{L}$ $\succ \mu_{A}^{l} = u^{l} \mu_{k}^{l} + (1 - u^{l}) \mu_{G}^{l}$ and $\sigma_{A}^{l} = u^{l} \sigma_{k}^{l} + (1 - u^{l}) \sigma_{G}^{l}$ \succ $u^l \sim Uniform(0,1)$
- Client-agnostic learning (CAL) with the augmented features

$$\succ \quad L_{CAFL} = \frac{1}{n_k} \sum \left\| f_{i,k} - f_{i,\Delta} \right\|_2^2, \ L_{CACL} = \frac{1}{n_k} \sum CE$$

Instance Feature Adaptation

- Normalize a test input with a mixed of statistics $\succ \mu_{i,t}^* = \alpha_{i,t}\mu_{i,t} + (1 - \alpha_{i,t})\mu_G$ and $\sigma_{i,t}^* = \alpha_{i,t}$
- Instance feature adapter takes the difference between two statistics and generates interpolation value $(\alpha_{i,t})$ as an instance-wise manner
- \succ We employ CE loss to train the adapter on each client, leveraging their differences teaches the adapter how to balance these statistics

Domain shift

----- : forward

$C(C_{\phi_k}(f_{i,\Delta}), y_{i,k})$

$$\sigma_{i,t} + (1 - \alpha_{i,t})\sigma_G$$

Experimental Results

Feature diversification

Mixing components Global only: u = 0.0Instance only: u = 1.0Global & instance fixed: u = 0.5Global & instance randomly: $u \sim U(0, 1)$

Ablation study

	Δμα	Loss	Inference	Acc. (%)							
	Aug.	L035	merenee		P	A		С	S	5	Avg.
(a) Baselines	X	CE FedProx	Global statistics	92.74 92.82	(0.97) (0.90)	77.08 ((76.43 (().59)).93)	75.08 (0.85 75.26 (0.99) 78.28) 78.95	(1.14) (1.64)	80.79 80.86
(b) Effectiveness of FedFD	Mixstyle FedFD	CAL	Global statistics	92.04 9 2.99	(0.63) (0.61)	80.19 ((82.17 (1).28) 1.15)	77.14 (0.48 77.71 (1.1 3) 82.53) 83.40	(0.94) (0.19)	82.98 84.07
(c1) Effectiveness of instance feature adapter	Х	CE	Global statistics Instance statistics (TBN [36]) Instance feature adapter	92.74 15.52 93.11	(0.97) (4.89) (0.08)	77.08 (0 10.91 (2 80.93 (0).59) 2.41)).79)	75.08 (0.85 9.36 (7.09) 77.01 (0.2 4) 78.28 16.09) 82.54	(1.14) (9.44) (0.79)	80.79 12.97 83.40
(c2) Comparison with other inference methods	FedFD	CAL	BIN [37] DSON [42] IABN [17] MixNorm [21] Random alpha Fixed alpha [53] Instance feature adapter	93.86 93.70 93.29 93.60 90.67 93.59 94.24	(0.53) (0.39) (0.13) (0.52) (0.59) (0.25) (0.33)	78.81 (0 83.17 (1 80.18 (1 82.77 (0 74.82 (2 79.27 (1 84.30 (0).45) 1.09) 1.16)).41) 2.97) 1.40)).44)	79.54 (0.40 76.08 (1.30 79.38 (1.33 78.30 (1.13 74.96 (0.76 79.64 (1.00 79.80 (1.16) 81.94) 83.14) 83.58) 83.12) 79.03) 82.43) 83.79	(0.88) (1.02) (0.91) (0.74) (1.64) (1.12) (0.49)	83.54 84.02 84.11 84.45 79.87 83.73 85.53

PACS, VLCS, and OfficeHome

Paradigm	Method	PACS	VLCS	OfficeHome	Avg. of 3 datasets	Paradigm	Method	PACS	VLCS	OfficeHome	Avg. of 3 dataset
	FedAvg [35]	77.35	74.86	63.47	71.89		COPA [48]	85.37	74.51	62.42	74.10
Decentralized	FedProx [31]	77.23	74.42	63.02	71.56	Decentralized	FedDG [33]	82.52	75.28	64.90	74.23
w/o DG	FedBN [32]	79 57	74 85	63 75	72 72		CCST [5]	83.56	75.20	63.50	74.09
w/0 DG	SiloBN [1]	80 70	75.33	64.08	73.40		CSAC [54]	82.58	75.21	64.35	74.05
		00.79	15.55	04.00	73.40 Decentralize	FedSR [38]	79.13	75.36	63.45	72.65	
	RandAug [8]	77.26	74.32	64.59	72.06	w/ rederated DG	FedSAM [2]	78.58	74.37	61.93	71.63
	Mixstyle [58]	82.43	75.54	63.24	73.74		SiloBN w/ GA [55]	80.83	75.41	64.19	73.48
	SFA [30]	77.98	72.77	59.47	70.06		FedFD	84.07	76.62	64.01	74.90
Decentralized	RandConv [51]	79.57	73.68	63.25	72.17		FedFD-A	85.53	76.68	64.71	75.64
w/ DG	L2D [47]	82.96	75.37	63.29	73.87						
	JiGen [3]	77.69	75.13	64.09	72.30						
	RSC [23]	81.60	75.90	63.01	73.50						
	SelfReg [26]	80.94	72.79	64.85	72.86						

Scalability

Method			PACS	
	Р	А	С	S
DoPrompt [57]	99.24 (0.16)	90.56 (0.54)	81.06 (0.42)	77.71 (0.56
DoPrompt	99.33 (0.24)	89 98 (0 53)	81 03 (0 24)	79.01 (1.21)
w/ GA [55]				
FedFD-A	99.39 (0.06)	92.29 (0.42)	83.88 (1.07)	79.62 (1.23)

Qualconv Al research

	Acc.
	81.75
	82.52
	83.43
.)	84.07

Computational cost

Methods	#Parms.	Training	Inference	Acc. (%)
FedAvg [35]	11.31M	1.43ms	1.34ms	77.35
SiloBN [1]	11.31M	1.43ms	1.34ms	80.79
FedFD	11.31M	2.25ms	1.34ms	84.07
BIN [37]	11.31M	3.24ms	1.35ms	83.54
MixNorm [21]	11.31M	2.25ms	6.70ms	84.45
IABN [17]	11.31M	2.25ms	1.57ms	84.11
FedFD-A	11.53M	3.50ms	1.37ms	85.53

	 Mathad	VLCS							
Avg.		V	L	С	S	Avg.			
5) 87.14	DoPrompt [57]	78.32 (1.29)	65.94 (1.28)	97.02 (0.49)	77.80 (1.22)	79.82			
1) 87.34	DoPrompt w/ GA [55]	79.84 (0.49)	65.15 (0.81)	97.14 (0.17)	76.72 (0.59)	79.71			
3) 88.79	FedFD-A	81.41 (0.81)	65.06 (0.62)	97.46 (0.79)	79.64 (0.94)	80.89			