
Introduction
Ø Federated domain generalization

(Federated DG) aims to improve a 
federated model’s ability to manage
various distributed source domains
while ensuring reliable generalization
to unseen domains 

Ø Challenges
Ø Domain shift: local models are

trained on limited domains
Ø Aggregating local models trained on own limited

domain can lead to a significant degradation in a global model performance
Ø Limitations of previous research

Ø FL models overfit to local domains, causing aggregation issues.
Ø Single-source DG underutilizes the rich server information inherent in FL, 

leading to suboptimal performance
Ø Multi-source DG necessitates sharing elements of local models amongst 

clients, causing privacy issue

Federated Feature Diversification
Ø Normalize inputs with a mix of statistics-exploiting global and local 

BN statistics concurrently
Ø Augmented feature 𝑓!,∆ is obtained with 𝜇∆$ , 𝜎∆$ $%&

'
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Ø Client-agnostic learning (CAL) with the augmented features
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Experimental Results

Motivation
Ø Feature diversification with global model

Ø Local model relies on CE loss from single 
domain, which lead to overfitting to single domain 

Ø The model can learn client invariant features with 
diverse clients’ data, but it poses privacy issue

Ø Instead, we augment local data with global BN 
statistics from the server, which reflects the 
feature statistics across all clients

Ø Feature adaptation with test instance
Ø At test time, it can be difficult to generalize to 

completely unseen domains where the data 
distribution has shifted from the training set

Ø Using the statistics of the test input can reduce 
the domain gap between the test and training 
domains

Instance Feature Adaptation
Ø Normalize a test input with a mixed of statistics

Ø 𝜇!,1∗ = 𝛼!,1𝜇!,1 + 1 − 𝛼!,1 𝜇* 	 and	 𝜎!,1∗ = 𝛼!,1𝜎!,1 + 1 − 𝛼!,1 𝜎*
Ø Instance feature adapter takes the difference between two statistics 

and generates interpolation value (𝛼!,#) as an instance-wise manner
Ø We employ CE loss to train the adapter on each client, leveraging 

their differences teaches the adapter how to balance these statistics 
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