
Augmented Neural Fine-Tuning for Efficient 
Backdoor Purification

Nazmul Karim1*, Abdullah Al Arafat2*, Umar Khalid1, Zhishan Guo2, and Nazanin Rahnavard1

1University of Central Florida, 2North Carolina State University
*Equal Contribution

European Conference on Computer Vision (ECCV) 2024
Milan, Italy

Wed 2 Oct 4:30 a.m. - 6:30 a.m. EDT, Poster# 341



Origin of Backdoor Attack
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Proposed Defense
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How Mixup Works? 
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Neural Mask Fine-Tuning (NFT) 
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t-SNE Visualization
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Backdoor Sample Cluster: 
i) Take a certain number of clean samples from all classes
ii) Add trigger to those samples and change their label to “0”

Class Cluster “0”

For CIFAR 10 dataset with 10 classes

After defense, backdoor samples are 
remapped to their original ground truth



Neural Mask Distribution
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We prune few filters (mask value = 0)
We keep most filters intact (mask value = 1)



Experimental Results 

• Image Datasets 
• Video Action Recognition Datasets 
• 3D Point Cloud 
• Object Detection 
• Natural Language Generation 



Image Datasets

• CIFAR10                  
• GTSRB
• Tiny-ImageNet
• ImageNet
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• BadNets
• LIRA                 
• WaNet
• TrojanNet
• ISSBA, etc.

4 Image Datasets- 14 Different Attacks-

Before Defense: Average Attack Success Rate (ASR) for all dataset is close to 100%

After Defense:  Average Attack Success Rate (ASR) for all dataset should be close to 
0%



Purification Results
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[1] One-shot Neural Backdoor Erasing via Adversarial Weight Masking (NIPS 2022)

Dataset CIFAR10 GTSRB Tiny 
ImageNet

ImageNet

Before Defense 100/92.9 100/ 97.4 100/59.8 99.2/74.5

Previous SOTA Defense 
[1]

3.95/88.3 2.72/ 94.5 6.29/54.6 2.87/69.4

NFT (Ours) 1.74/90.8 0.24/ 95.1 2.34/57.8 3.61/70.9

ASR/ACC (%) before and after Backdoor Purification (For BadNets)

ACC should be same before and after defense. Higher drop in ACC indicates poor defense 



Other Datasets
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Video Action Recognition Datasets 

Object Detection Datasets



Other Datasets

3D Point Cloud Datasets 



Ablation Study



Ablation Study

Study with different mask scheduling function shows that Exponential (Exp.) 
Decay function produces the best performance 
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