

Augmented Neural Fine-Tuning for Efficient Backdoor Purification

Nazmul Karim^{1*}, Abdullah Al Arafat^{2*}, Umar Khalid¹, Zhishan Guo², and Nazanin Rahnavard¹

¹University of Central Florida, ²North Carolina State University *Equal Contribution

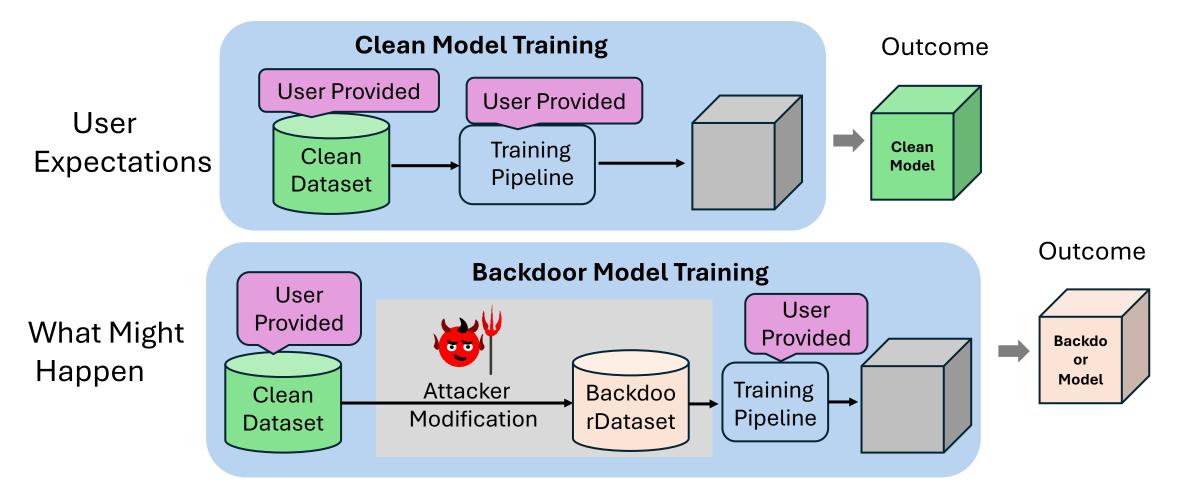
Equation

European Conference on Computer Vision (ECCV) 2024 Milan, Italy

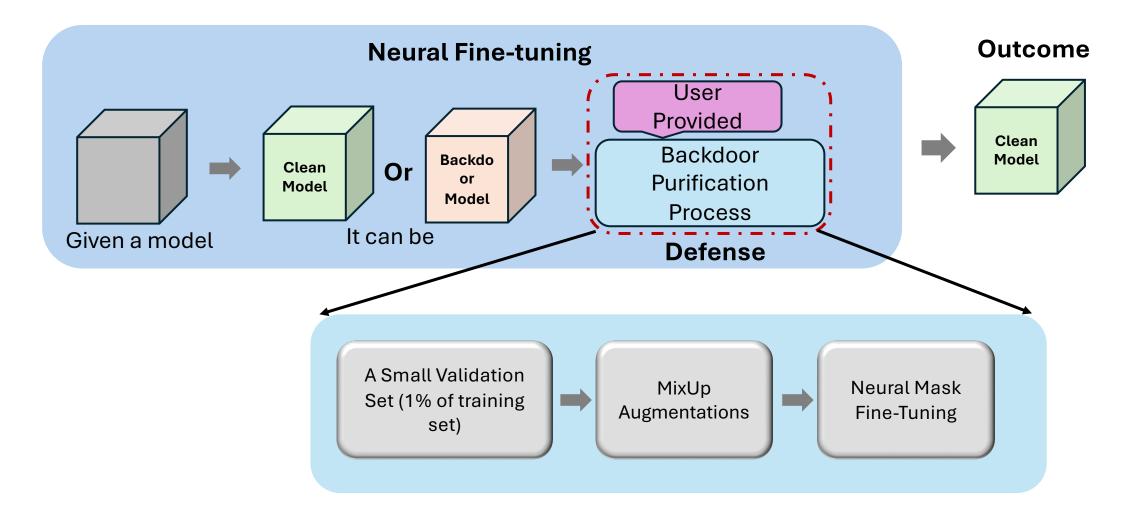
Wed 2 Oct 4:30 a.m. - 6:30 a.m. EDT, Poster# 341

Origin of Backdoor Attack

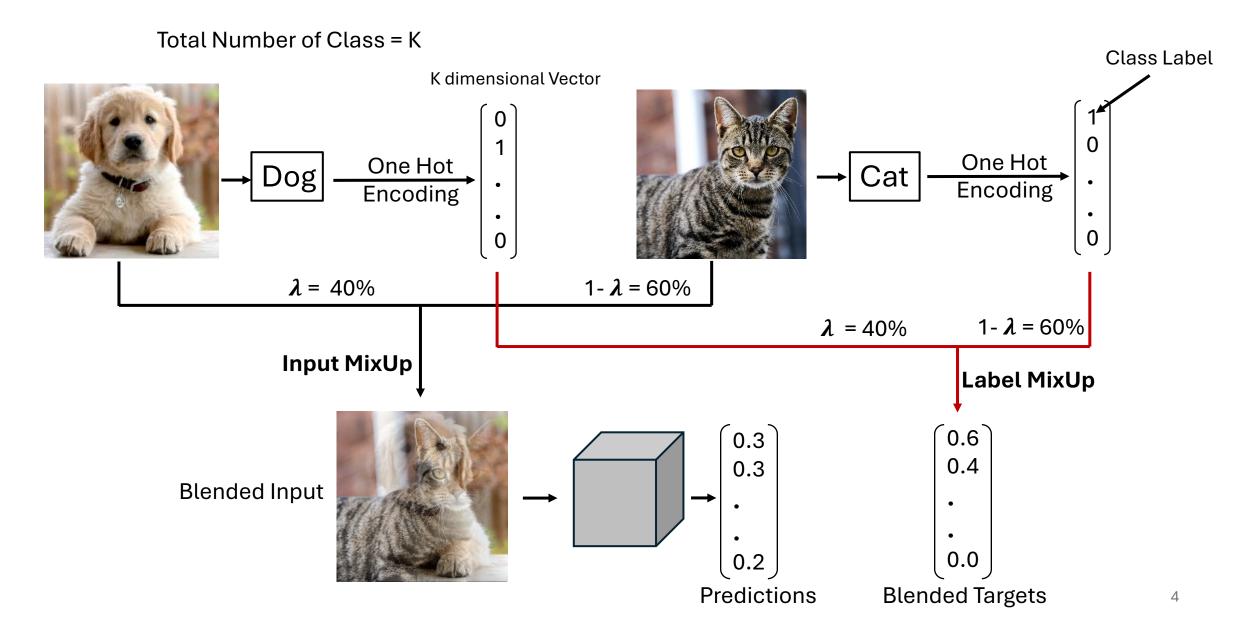
Scenario: Due to resource constraints for large model training, user outsources the training to a third party (who may be an attacker) to train the model



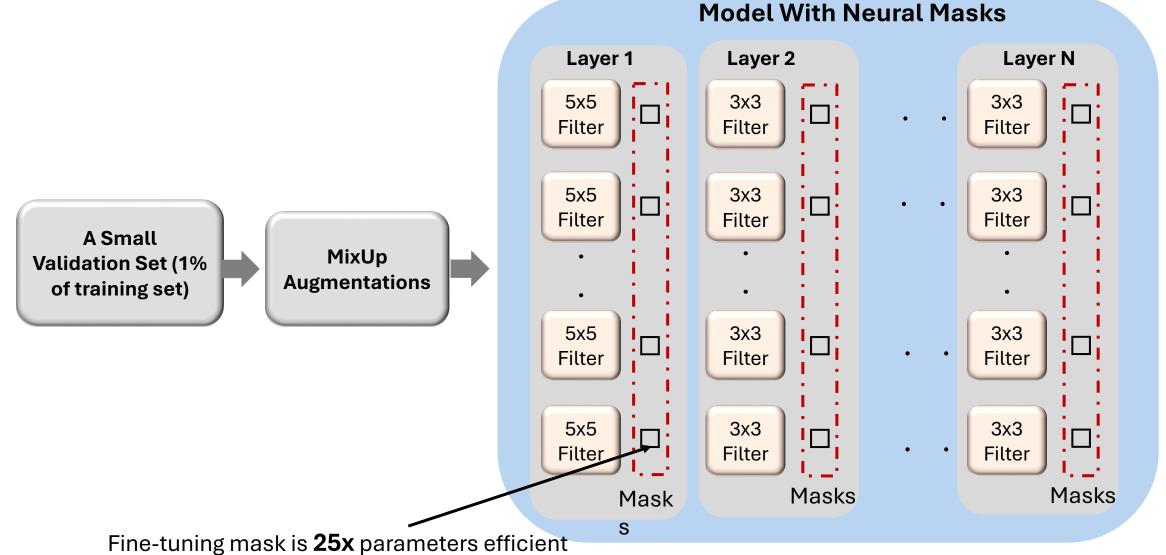
Proposed Defense



How Mixup Works?

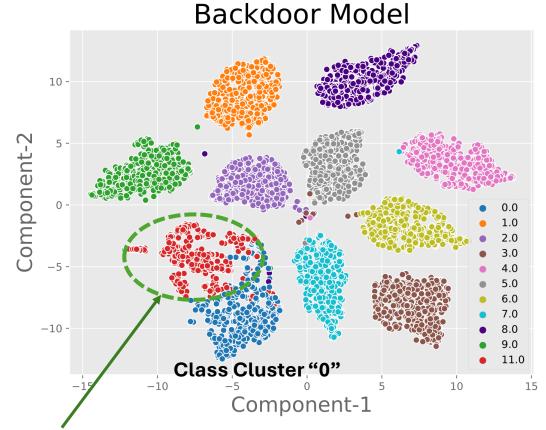


Neural Mask Fine-Tuning (NFT)



t-SNE Visualization

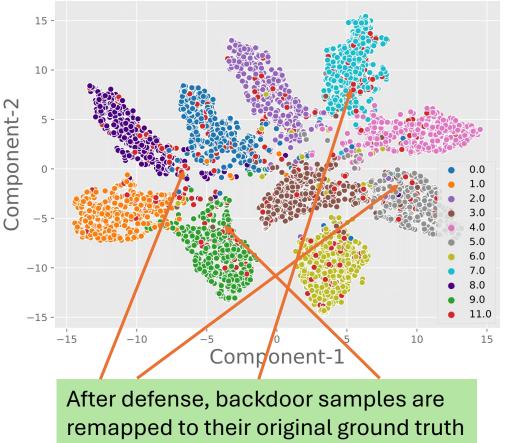
For CIFAR 10 dataset with 10 classes



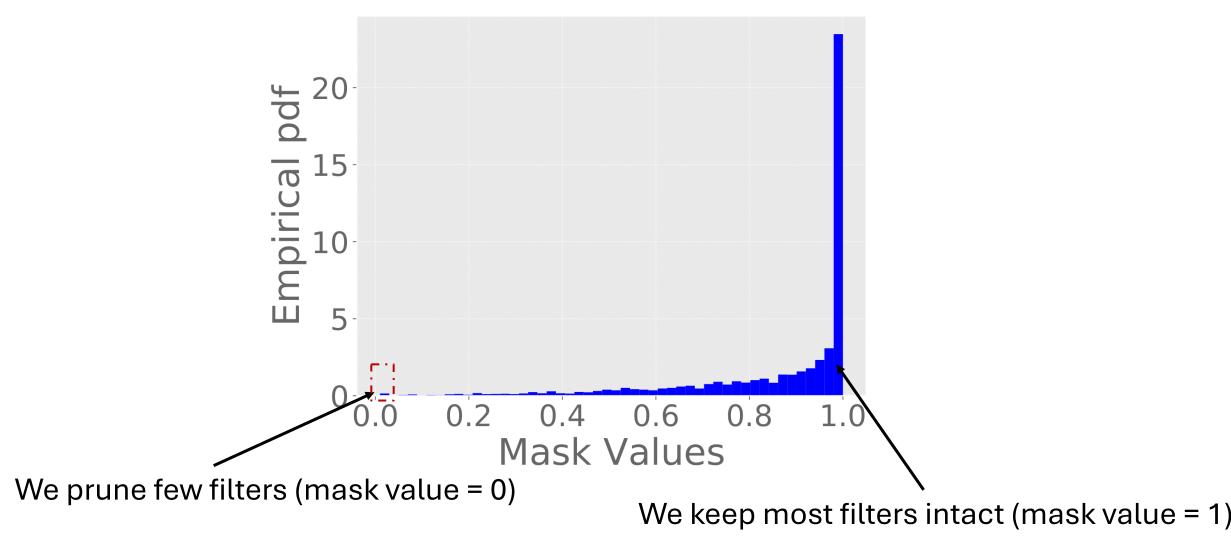
Backdoor Sample Cluster:

- i) Take a certain number of clean samples from all classes
- ii) Add trigger to those samples and change their label to "0"

Purified Model with Regularizer



Neural Mask Distribution



Experimental Results

- Image Datasets
- Video Action Recognition Datasets
- 3D Point Cloud
- Object Detection
- Natural Language Generation

Image Datasets

4 Image Datasets-

- CIFAR10
- GTSRB
- Tiny-ImageNet
- ImageNet

14 Different Attacks-

- BadNets
- LIRA
- WaNet
- TrojanNet
- ISSBA, etc.

Before Defense: Average Attack Success Rate (ASR) for all dataset is close to 100%

After Defense: Average Attack Success Rate (ASR) for all dataset should be close to

Purification Results

ASR/ACC (%) before and after Backdoor Purification (For BadNets)

Dataset	CIFAR10	GTSRB	Tiny ImageNet	ImageNet
Before Defense	100/92.9	100/97.4	100/59.8	99.2/74.5
Previous SOTA Defense [1]	3.95/88.3	2.72/ 94.5	6.29/54.6	2.87/69.4
NFT (Ours)	1.74/90.8	0.24/95.1	2.34/57.8	3.61/70.9

ACC should be same before and after defense. Higher drop in ACC indicates poor defense

[1] One-shot Neural Backdoor Erasing via Adversarial Weight Masking (NIPS 2022)

Other Datasets

Dataset	No d	efense	I-B	AU	AV	VM	RI	NP	FT-S	SAM	NFT	(Ours)
Dataset	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC
UCF-101 HMDB-51	81.3	75.6	20.4	70.6	20.8	70.1	17.0	70.3	15.9	71.6	13.3	71.2
HMDB-51	l 80.2	45.0	17.5	41.1	15.2	40.9	12.6	40.4	10.8	41.7	9.4	40.8

Video Action Recognition Datasets

Dataset	No defense		ANP		AWM		RNP		FT-SAM		NFT (Ours)	
Dataset	ASR	mAP	ASR	mAP	ASR	mAP	ASR	mAP	ASR	mAP	ASR	mAP
VOC07		92.5										
VOC12	84.8	91.9	18.6	85.3	19.0	85.9	13.8	86.4	14.6	87.1	14.2	88.4
MS-COCO	85.6	88.0	19.7	84.1	22.6	83.4	17.1	84.3	19.2	83.8	16.6	85.8

Object Detection Datasets

Other Datasets

Attack	No D	efense	A1	NP	AV	VM	R	NP	FT-S	SAM	NFT	(Ours)
Trouch	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC
PointBA-I	98.6	89.1	13.6	82.6	15.4	83.9	8.1	84.0	8.8	84.5	9.6	85.7
PointBA-C	94.7	89.8	14.8	82.0	13.1	82.4	9.4	83.8	8.2	85.0	7.5	85.3
PointCBA	66.0	88.7	21.2	83.3	21.5	83.8	18.6	84.6	20.3	84.7	19.4	86.1
3DPC-BA	93.8	91.2	16.8	84.7	15.6	85.9	13.9	85.7	13.1	86.3	12.6	87.7

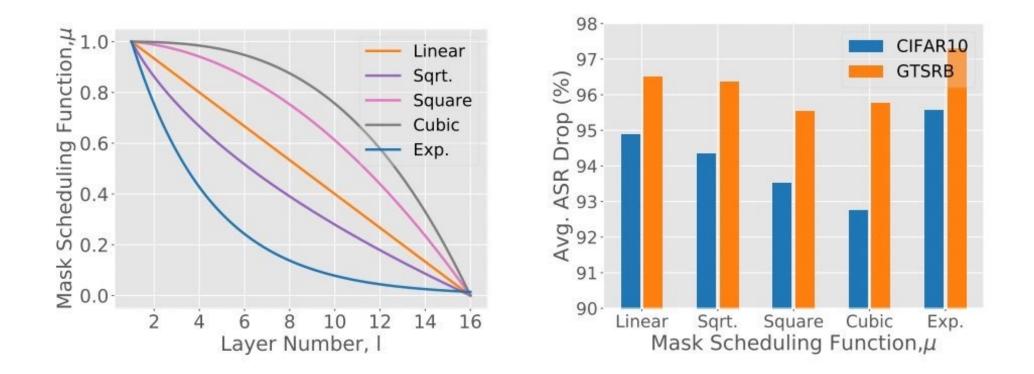
3D Point Cloud Datasets

Ablation Study

Table 7: Purification performance (%) for various validation data sizes. NFT performs reasonably well even with as few as 10 samples, *i.e.*, one sample (shot) per class for CIFAR10. We also show the impact of the mask regularizer, mask scheduling function μ , and augmentations on performance, which resonates with Fig. 1. Mask regularizer has the most impact on the clean test accuracy (around 7% worse without the regularizer). Without strong augmentations, we have a better ACC with a slightly worse ASR (around 6% drop).

Attack	Dyn	amic	Wa	Net	LIRA			
Samples	10	100	10	100	10	100		
Method	ASR ACC	ASR ACC	ASR ACC	ASR ACC	ASR ACC	ASR ACC		
No Defense AWM FT-SAM	86.74 55.73	9.16 85.33	83.01 62.21	7.23 84.38	99.2592.1591.4566.6411.8372.40	10.83 85.87		
$rac{ m NFT}{ m w/o}$ Reg. NFT w/o Aug. NFT w/o $\mu(l)$ NFT	11.91 81.86 5.11 80.32	$\begin{array}{cccc} 10.59 & 89.53 \\ 3.04 & 88.58 \end{array}$	$\begin{array}{ccc} 10.36 & 83.10 \\ 5.85 & 82.46 \end{array}$	7.81 89.68 4.64 88.02	$12.23 \ 81.05$	9.1688.744.3388.75		

Ablation Study



Study with different mask scheduling function shows that **Exponential (Exp.) Decay function produces the best performance**

Thank You