

Efficient and Intelligent Computing Lab

Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields

ECCV 2024 Oral

Yonggan Fu, Huaizhi Qu, Zhifan Ye, Chaojian Li, Kevin Zhao,

Yingyan (Celine) Lin

Background: 3D Reconstruction

Block-NeRF, CVPR 2022

Input: Sparsely captured views

Output: Reconstructed 3D scene

A Demanding Trend: On-device 3D Recon.

Images from public domains

On-device 3D reconstruction: Highly desirable to enable ubiquitous 3D intelligence

Desired Properties for Real-World 3D Applications

- Recon. (training) efficiency: Instantly reconstruct a new scene
- **Rendering efficiency:** Perform on-device real-time rendering
- **3D task generality:** Support general 3D understanding tasks

Existing 3D recon. solutions cannot win all the three properties simultaneously

Require costly retraining for each new scene & task

"NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", B. Mildenhall et al., ECCV'20.

Can only achieve < 0.25 FPS on an NVIDIA RTX 2080Ti GPU

"IBRNet: Learning Multi-View Image-Based Rendering", Q. Wang et al., CVPR'21.

Need retraining on unseen 3D understanding tasks

"Semantic Ray: Learning a Generalizable Semantic Field with Cross-Reprojection Attention", F. Liu et al., CVPR'23.

Our Proposed Method: Omni-Recon

- Omni-Recon: Harnessing image-based rendering for ubiquitous 3D reconstruction and understanding
 - X
 - Instant scene reconstruction
 - Rapidly enable real-time rendering
 - Zero-shot 3D scene understanding

Omni-Recon: Key Research Question

How to address the broken links in an image-based rendering pipeline?

Insight 1: Pretraining in NeRF and rendering with GPU-friendly representations could win the best of both worlds

For example: Meshes are GPU-friendly due to rasterization

Insight 1: Pretraining in NeRF and rendering with GPU-friendly representations could win the best of both worlds

NeRF: MLP inference for >= 64 points per ray Mesh: MLP inference for 1 points per ray
+ Well supported by GPU rasterization

Enabler 1: A NeRF backbone with decoupled geo./appear. branches

Previous models

Our Omni-Recon's backbone

Enabler 1: A NeRF backbone with decoupled geo./appear. branches

At rendering time: Well-fitted into GPU rasterization pipelines

Insight 2: Regions with similar appearance (RGB) are highly likely to have similar 3D scene properties (e.g., semantics)

Enabler 2: Lift 2D task predictions to 3D in a zero-shot manner via reusing the appearance branch predictions

Input: Source views of a new scene

Extract geometry and appearance features

[1] "MVSNet: Depth Inference for Unstructured Multi-view Stereo", Y. Yao et al., ECCV'18.

The complex geometry branch: Model the interactions with geometry and appearance features as well as the occlusion effect along the ray

$$\begin{split} \mathbf{M}_{sdf}^{geo}(\mathbf{x}, \{\mathbf{v}_k\}_{k=1}^K) &= CrossAttention \, (\mathbf{q} = \mathbf{x}, \mathbf{k} = \mathbf{v} = \{\mathbf{v}_k\}_{k=1}^K) \\ \mathbf{M}_{sdf}^{appr}(\mathbf{x}, \{\mathbf{f}_i\}_{i=1}^N) &= SubAttention \, (\mathbf{q} = \mathbf{x}, \mathbf{k} = \mathbf{v} = \{\mathbf{f}_i\}_{i=1}^N) \\ \mathbf{M}_{sdf}^{occ}(\mathbf{x}) &= SelfAttention \, (\mathbf{q} = \mathbf{k} = \mathbf{v} = \mathbf{x}) \end{split}$$

The lightweight appear. branch: Model each 3D point's color by blending its 2D source view projections

$$\hat{\mathbf{c}} = \sum_{i=1}^{N} \omega_i \mathbf{c}_i$$

Omni-Recon: Pretraining in NeRF

Omni-Recon: Rendering with Mesh

Employ Marching Cube [1] for mesh extraction

[1] "Marching cubes: A high resolution 3D surface construction algorithm", W. Lorensen et al., SIGGRAPH'87.

Omni-Recon: Rendering with Mesh

Supported by the GPU rasterization pipeline [1] for real-time rendering & rapid mesh finetuning

[1] "Modular Primitives for High-Performance Differentiable Rendering", S. Laine et al., ToG'20.

Omni-Recon: Achieve 3D Task Generality

- Zero-shot scene understanding: Predict-then-Blend
 - Predict 2D properties of each source view
 - Lift to 3D via reusing the blending weight of RGB

3D scene understanding
$$~~\hat{\mathbf{p}} = \sum_{i=1}^{N} \omega_i \mathbf{p}_i$$

Reuse from RGB Predict in 2D

• **Omni-Recon:** SOTA generalizable 3D surface extraction accuracy

Mesh reconstruction from 3 views of a new scene

• **Omni-Recon:** SOTA generalizable 3D surface extraction accuracy

Method	Mean	24	37	40	55	63	65	69	83	97	105	106	110	114	118	122
COLMAP [57]	1.52	0.90	2.89	1.63	1.08	2.18	1.94	1.61	1.30	2.34	1.28	1.10	1.42	0.76	1.17	1.14
MVSNet [83]	1.22	1.05	2.52	1.71	1.04	1.45	1.52	<u>0.88</u>	1.29	1.38	1.05	0.91	0.66	0.61	1.08	1.16
IDR [86]	3.39	4.01	6.40	3.52	1.91	3.96	2.36	4.85	1.62	6.37	5.97	1.23	4.73	0.91	1.72	1.26
VolSDF [84]	3.41	4.03	4.21	6.12	0.91	8.24	1.73	2.74	1.82	5.14	3.09	2.08	4.81	0.60	3.51	2.18
UNISURF [48]	4.39	5.08	7.18	3.96	5.30	4.61	2.24	3.94	3.14	5.63	3.40	5.09	6.38	2.98	4.05	2.81
NeuS [76]	4.00	4.57	4.49	3.97	4.32	4.63	1.95	4.68	3.83	4.15	2.50	1.52	6.47	1.26	5.57	6.11
PixelNeRF [88]	6.18	5.13	8.07	5.85	4.40	7.11	4.64	5.68	6.76	9.05	6.11	3.95	5.92	6.26	6.89	6.93
IBRNet [77]	2.32	2.29	3.70	2.66	1.83	3.02	2.83	1.77	2.28	2.73	1.96	1.87	2.13	1.58	2.05	2.09
MVSNeRF [10]	2.09	1.96	3.27	2.54	1.93	2.57	2.71	1.82	1.72	2.29	1.75	1.72	1.47	1.29	2.09	2.26
SparseNeuS [40]	1.96	2.17	3.29	2.74	1.67	2.69	2.42	1.58	1.86	1.94	1.35	1.50	1.45	0.98	1.86	1.87
VolRecon [55]	1.38	1.20	2.59	1.56	1.08	1.43	1.92	1.11	1.48	1.42	1.05	1.19	1.38	0.74	1.23	1.27
ReTR [34]	1.17	1.05	2.31	1.44	0.98	1.18	1.52	0.88	1.35	1.30	0.87	1.07	0.77	0.59	1.05	1.12
Omni-Recon (Ours)	1.13	0.91	2.13	1.52	0.93	1.09	1.70	0.84	1.29	1.20	0.83	1.04	0.81	0.55	1.05	1.05

Setting: Mesh reconstruction from 3 views of a new scene from DTU **Metric:** Chamfer Distance (\downarrow)

- Omni-Recon with mesh baking & finetuning
 - Enable real-time rendering (2458 × faster)
 - Surpass generalizable recon. baselines with a 10s finetuning
 - A +3.43 PSNR improvement after 5min finetuning

Method	FPS	Mean	24	37	40	55	63	65	69	83	97	105	106	110	114	118	122
VolRecon [55]	0.029	24.58	22.33	20.59	21.53	23.72	24.2	23.65	24.47	22.77	23.54	22.62	26.89	27.44	25.76	30.14	29.19
ReTR [34]	0.024	25.59	24.32	21.84	23.4	24.56	26.31	24.5	24.63	24.3	24.58	23.85	27.84	27.97	26.76	30.03	28.96
Ours w/o ft.	ž S	22.96	20.12	19.71	22.27	22.78	24.55	21.77	21.51	26.72	22.33	24.49	22.52	22.93	24.68	23.84	24.12
Ours (ft. 10s)		25.68	21.42	21.68	$\underline{24.06}$	24.12	28.19	24.10	23.95	31.65	24.41	28.15	25.63	25.85	26.15	26.82	26.89
Ours (ft. 20s)	71.3	27.21	22.63	22.92	25.12	25.42	30.03	25.95	26.16	33.19	$\underline{26.22}$	30.36	27.44	27.04	26.93	29.15	29.65
Ours (ft. 30s)	(10.99)	27.78	23.2	23.26	25.54	25.7	30.59	26.83	26.96	33.66	26.47	30.73	28.14	27.70	27.1	30.17	30.65
Ours (ft. 1min)		28.34	24.69	24.11	25.76	26.05	30.93	27.66	27.49	33.68	27.07	30.97	28.51	28.54	27.35	31.17	31.54
Ours (ft. 3min)		28.95	25.2	24.32	25.94	26.16	32.15	28.99	27.88	34.94	27.35	31.62	28.93	28.97	27.56	31.70	32.49
Ours (ft. 5min)		29.02	25.34	24.36	25.63	26.21	32.16	29.33	27.81	34.94	27.32	31.74	29.04	29.05	27.69	31.74	32.89

Rendering PSNR (↑) on test scenes @ DTU FPS measured on an NVIDIA RTX 2080Ti GPU

• Omni-Recon: Support diverse 3D understanding & editing tasks leveraging our rendering pipeline

Language-driven open-set semantic segmentation

3D scene editing

Omni-Recon: Key Takeaways

- Pretraining in image-based NeRF and rendering with mesh could win both recons. and rendering efficiency
- The correlation between appear. and scene properties makes the zero-shot 2D-to-3D task lifting feasible

Efficient and Intelligent Computing Lab

Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields

ECCV 2024 Oral

Yonggan Fu, Huaizhi Qu, Zhifan Ye, Chaojian Li, Kevin Zhao,

Yingyan (Celine) Lin

