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Background: 3D Reconstruction

Input: Sparsely captured views

Block-NeRF, CVPR 2022

Output: Reconstructed 3D scene

https://docs.google.com/file/d/1uhXOjviyytRc0iMMMwpIzDIeJyU2uhvY/preview


A Demanding Trend: On-device 3D Recon.

On-device 3D reconstruction: Highly desirable to enable 

ubiquitous 3D intelligence

Virtual Meetings Metaverse

Images from public domains

Autonomous Driving



Desired Properties for Real-World 3D Applications

● Recon. (training) efficiency: Instantly reconstruct a new scene

● Rendering efficiency: Perform on-device real-time rendering

● 3D task generality: Support general 3D understanding tasks
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Limitations of Existing 3D Recon. Solutions

Existing 3D recon. solutions cannot win all the three 

properties simultaneously
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Neural Radiance 
Fields (NeRFs)

At Test TimeInput Output

New Pos. + View dir. Novel Views of the 
Same Scene & Task

Per-scene 

Opt. NeRFs

Require costly retraining for each new scene & task
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“NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”, B. Mildenhall et al., ECCV’20.

Limitations of Existing 3D Recon. Solutions



Generalizable 
NeRFs

Can only achieve < 0.25 FPS on an NVIDIA RTX 2080Ti GPU

Significant complexity 

of Generalizable NeRF pipelines 
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“IBRNet: Learning Multi-View Image-Based Rendering”, Q. Wang et al., CVPR’21.

Limitations of Existing 3D Recon. Solutions
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Target Scene

Semantic Surface 
Normal

Shading Keypoint 
Detection

Edge 
Detection

Need retraining on unseen 3D understanding tasks

“Semantic Ray: Learning a Generalizable Semantic Field with Cross-Reprojection Attention”, F. Liu et al., CVPR’23.

NeRF-based 3D 
Und. Models

Limitations of Existing 3D Recon. Solutions



Our Proposed Method: Omni-Recon

● Omni-Recon: Harnessing image-based rendering for 

ubiquitous 3D reconstruction and understanding 

○ Instant scene reconstruction

○ Rapidly enable real-time rendering

○ Zero-shot 3D scene understanding



Omni-Recon: Key Research Question
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How to address the broken links in an image-based rendering pipeline?
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Insight 1: Pretraining in NeRF and rendering with GPU-friendly 

representations could win the best of both worlds

Omni-Recon: Key Insights & Enablers

For example: Meshes are GPU-friendly due to rasterization  
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Insight 1: Pretraining in NeRF and rendering with GPU-friendly 

representations could win the best of both worlds

NeRF: MLP inference for >= 64 

points per ray

Mesh: MLP inference for 1 points per ray 

+ Well supported by GPU rasterization

Omni-Recon: Key Insights & Enablers

Easier to 
pretrain

Faster to 
render



Omni-Recon: Key Insights & Enablers
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Enabler 1: A NeRF backbone with decoupled geo./appear. branches

Previous models Our Omni-Recon’s backbone



Omni-Recon: Key Insights & Enablers
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Enabler 1: A NeRF backbone with decoupled geo./appear. branches

At rendering time: Well-fitted into GPU rasterization pipelines

Bake into 
meshes



Omni-Recon: Key Insights & Enablers

Insight 2: Regions with similar appearance (RGB) are highly likely to 

have similar 3D scene properties (e.g., semantics)
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Omni-Recon: Key Insights & Enablers

Enabler 2: Lift 2D task predictions to 3D in a zero-shot manner via 

reusing the appearance branch predictions
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Efficiency
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2D predictions using 
2D Vision Models

Lift 2D RGB to 3D

Lift 2D task 
predictions to 3D



Omni-Recon: Detailed Backbone Design

Input: Source views of a new scene



Extract geometry and appearance features

Cost volume constructed following traditional 
multi-view stereo methods [1]

[1] “MVSNet: Depth Inference for Unstructured Multi-view Stereo”, Y. Yao et al., ECCV’18.

Omni-Recon: Detailed Backbone Design



The complex geometry branch: Model the interactions with geometry 

and appearance features as well as the occlusion effect along the ray

Omni-Recon: Detailed Backbone Design

Blending weights of 
source views

Color:



Omni-Recon: Detailed Backbone Design

Blending weights of 
source views

The lightweight appear. branch: Model each 3D point's color by blending 

its 2D source view projections



Omni-Recon: Pretraining in NeRF

Blending weights of 
source views

Pretrain on a set 
of scenes



Omni-Recon: Rendering with Mesh

Baked into 
meshes

Employ Marching Cube [1] for mesh extraction

[1] “Marching cubes: A high resolution 3D surface construction algorithm”, W. Lorensen et al., SIGGRAPH’87.

Blending weights of 
source views

Fragment 
Shader 

At rendering 
time:



Supported by the GPU rasterization pipeline [1] for real-time rendering 

& rapid mesh finetuning

[1] “Modular Primitives for High-Performance Differentiable Rendering”, S. Laine et al., ToG’20.

Omni-Recon: Rendering with Mesh

Rasterization Shading



● Zero-shot scene understanding: Predict-then-Blend

○ Predict 2D properties of each source view

○ Lift to 3D via reusing the blending weight of RGB

Omni-Recon: Achieve 3D Task Generality

Reuse from RGB Predict in 2D

3D scene understanding



● Omni-Recon: SOTA generalizable 3D surface extraction accuracy

Omni-Recon: Experimental Results

Mesh reconstruction from 3 views of a new scene



● Omni-Recon: SOTA generalizable 3D surface extraction accuracy

Omni-Recon: Experimental Results

Setting: Mesh reconstruction from 3 views of a new scene from DTU

Metric: Chamfer Distance (↓) 



● Omni-Recon with mesh baking & finetuning

○ Enable real-time rendering (2458 × faster)

○ Surpass generalizable recon. baselines with a 10s finetuning

○ A +3.43 PSNR improvement after 5min finetuning

Omni-Recon: Experimental Results

Rendering PSNR (↑) on test scenes @ DTU 

FPS measured on an NVIDIA RTX 2080Ti GPU



Omni-Recon: Experimental Results

● Omni-Recon: Support diverse 3D understanding & 

editing tasks leveraging our rendering pipeline

Language-driven open-set 
semantic segmentation 3D scene editing



Omni-Recon: Key Takeaways

● Pretraining in image-based NeRF and rendering with 

mesh could win both recons. and rendering efficiency

● The correlation between appear. and scene properties 

makes the zero-shot 2D-to-3D task lifting feasible
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