

Efficient and Intelligent Computing Lab

Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields

ECCV 2024 Oral

Yonggan Fu, Huaizhi Qu, Zhifan Ye, Chaojian Li, Kevin Zhao,

Yingyan (Celine) Lin

Background: 3D Reconstruction

Block-NeRF, CVPR 2022

Input: Sparsely captured views

Output: Reconstructed 3D scene

A Demanding Trend: On-device 3D Recon.

Images from public domains

On-device 3D reconstruction: Highly desirable to enable ubiquitous 3D intelligence

Desired Properties for Real-World 3D Applications

- **Recon. (training) efficiency:** Instantly reconstruct a new scene
- **Rendering efficiency:** Perform on-device real-time rendering
- **3D task generality:** Support general 3D understanding tasks

Existing 3D recon. solutions cannot win all the three properties simultaneously

Require costly retraining for each new scene & task

"NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", B. Mildenhall et al., ECCV'20.

Can only achieve < 0.25 FPS on an NVIDIA RTX 2080Ti GPU

"IBRNet: Learning Multi-View Image-Based Rendering", Q. Wang et al., CVPR'21.

Need retraining on unseen 3D understanding tasks

"Semantic Ray: Learning a Generalizable Semantic Field with Cross-Reprojection Attention", F. Liu et al., CVPR'23.

Our Proposed Method: Omni-Recon

- **● Omni-Recon:** Harnessing image-based rendering for **ubiquitous 3D reconstruction and understanding**
	- Instant scene reconstruction
		- Rapidly enable real-time rendering
		- Zero-shot 3D scene understanding

Omni-Recon: Key Research Question

How to address the broken links in an image-based rendering pipeline?

Insight 1: Pretraining in NeRF and rendering with GPU-friendly representations could win the best of both worlds

For example: Meshes are GPU-friendly due to rasterization

Insight 1: Pretraining in NeRF and rendering with GPU-friendly representations could win the best of both worlds

NeRF: MLP inference for **>= 64 points per ray**

Mesh: MLP inference for **1 points per ray** + Well supported by **GPU rasterization**

Enabler 1: A NeRF backbone with decoupled geo./appear. branches

Previous models Our Omni-Recon's backbone

Enabler 1: A NeRF backbone with decoupled geo./appear. branches

At rendering time: Well-fitted into GPU rasterization pipelines

Insight 2: Regions with similar appearance (RGB) are highly likely to have similar 3D scene properties (e.g., semantics)

Enabler 2: Lift 2D task predictions to 3D in a zero-shot manner via reusing the appearance branch predictions

Input: Source views of a new scene

Extract geometry and appearance features

[1] "MVSNet: Depth Inference for Unstructured Multi-view Stereo", Y. Yao et al., ECCV'18.

The complex geometry branch: Model the interactions with geometry and appearance features as well as the occlusion effect along the ray

$$
\mathbf{M}_{sdf}^{geo}(\mathbf{x}, \{\mathbf{v}_k\}_{k=1}^K) = CrossAttention(\mathbf{q} = \mathbf{x}, \mathbf{k} = \mathbf{v} = \{\mathbf{v}_k\}_{k=1}^K)
$$

$$
\mathbf{M}_{sdf}^{appr}(\mathbf{x}, \{\mathbf{f}_i\}_{i=1}^N) = SubAttention(\mathbf{q} = \mathbf{x}, \mathbf{k} = \mathbf{v} = \{\mathbf{f}_i\}_{i=1}^N)
$$

$$
\mathbf{M}_{sdf}^{occ}(\mathbf{x}) = SelfAttention(\mathbf{q} = \mathbf{k} = \mathbf{v} = \mathbf{x})
$$

The lightweight appear. branch: Model each 3D point's color by blending its 2D source view projections

$$
\hat{\textbf{c}} = \textstyle\sum_{i=1}^N \omega_i \textbf{c}_i
$$

Omni-Recon: Pretraining in NeRF

Omni-Recon: Rendering with Mesh

Employ Marching Cube [1] for mesh extraction

[1] "Marching cubes: A high resolution 3D surface construction algorithm", W. Lorensen et al., SIGGRAPH'87.

Omni-Recon: Rendering with Mesh

Supported by the GPU rasterization pipeline [1] for real-time rendering & rapid mesh finetuning

[1] "Modular Primitives for High-Performance Differentiable Rendering", S. Laine et al., ToG'20.

Omni-Recon: Achieve 3D Task Generality

- **● Zero-shot scene understanding:** Predict-then-Blend
	- **○** Predict 2D properties of each source view
	- \circ Lift to 3D via reusing the blending weight of RGB

3D scene understanding
$$
\hat{\mathbf{p}} = \sum_{i=1}^{N} \omega_i \mathbf{p}_i
$$

Reuse from RGB Predict in 2D

Omni-Recon: SOTA generalizable 3D surface extraction accuracy

Mesh reconstruction from 3 views of a new scene

Omni-Recon: SOTA generalizable 3D surface extraction accuracy

Setting: Mesh reconstruction from 3 views of a new scene from DTU **Metric:** Chamfer Distance (**↓**)

- **● Omni-Recon with mesh baking & finetuning**
	- Enable **real-time rendering (2458 × faster)**
	- Surpass generalizable recon. baselines with **a 10s finetuning**
	- **A +3.43 PSNR improvement** after 5min finetuning

Rendering PSNR (↑) on test scenes @ DTU FPS measured on an NVIDIA RTX 2080Ti GPU

● Omni-Recon: Support diverse 3D understanding & editing tasks leveraging our rendering pipeline

Language-driven open-set semantic segmentation 3D scene editing

Omni-Recon: Key Takeaways

- **Pretraining in image-based NeRF** and **rendering with mesh** could win both recons. and rendering efficiency
- The correlation between appear. and scene properties makes the **zero-shot 2D-to-3D task lifting** feasible

Efficient and Intelligent Computing Lab

Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields

ECCV 2024 Oral

Yonggan Fu, Huaizhi Qu, Zhifan Ye, Chaojian Li, Kevin Zhao,

Yingyan (Celine) Lin

