

OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation

Yuchen Che¹, Ryo Furukawa², Asako Kanezaki¹

¹Tokyo Institute of Technology, ²Accenture Japan Ltd.

Automation & Knowledge Lab.

BackgroundModelReal-world DatasetExperimentsConclusionCategory-level Articulated Object Pose Estimation

Challenge

Huge variance in object pose, joint state

bject Pose

Joint States

Equivariant

Feature Extraction

Iteration

Estimated

Part Poses

 $\{P_i^{g_{j_0}}\}$

Liu, Xueyi, et al. Self-supervised Category-level Articulated Object Pose Estimation with Part-level SE(3)-equivariance. ICLR, 2023.

Factorization

Articulated Pose

Factorization

- A new state-of-the-art self-supervised model: OP-Align
- A new real-world dataset

EAP [24]

Ours

Y. Che et al. OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation.

Background Model Real-world Dataset Experiments Conclusion OP-Align: Object-level and Part-level Alignment & Reconstruction

- Construct a canonical reconstruction with a fixed pose and joint states among the category.
- Estimate **transformations** which aligns an input and this canonical reconstruction.

Background Model Real-world Dataset Experiments Conclusion OP-Align: Object-level and Part-level Alignment & Reconstruction

- Construct a **canonical reconstruction** with a fixed pose and joint states among the category.
- Estimate transformations which aligns an input and this canonical reconstruction.

Background Model Real-world Dataset Experiments Conclusion OP-Align: Object-level and Part-level Alignment & Reconstruction

- Construct a **canonical reconstruction** with a fixed pose and joint states among the category.
- Estimate transformations which aligns an input and this canonical reconstruction.

Y. Che et al. OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation.

- Part-level alignment with predicted joint parameters
- Train such a model without annotation

- Predicted joint direction, pivot, and states
- Each part of the input can be aligned with the **corresponding part** of the reconstruction

- Articulated Objects from 5 categories, 4 training objects & 2 testing objects •
- At least 8 different joint states for each object
- Object mask generated by Segment Anything Model or Mask-RCNN

Category	Training		Testing			Objec	Detection	
	Image	Instance	e Image Instance		Part Joint(prismatic) Joint(revolute)			Detection
basket	974	4	449	2	3	0	2	SAM [17]
drawer	884	4	452	2	2	1	0	SAM [17]
laptop	740	4	412	2	2	0	1	Mask-RCNN [9]
scissors	922	4	421	2	2	0	1	Mask-RCNN [9]
suitcase	813	4	381	2	2	0	1	Mask-RCNN [9]

its

- GB-D
- bject Mask

Annotations

- Part Segmentation
- Part Rotation
- Part Translation
- Part Scale
- Joint Pivot
- Joint Direction

	Background Model			Real-worl	Real-world Dataset		Experiments		Conclusion				
Experiments on the Synthetic Dataset													
•	Partially obs generated w State-of-the- Real-time inf	d point clo andom cam performance ce speed	ud era pos e	sition —— Mean Ei	Object Aligned Part-l Aligned Reconstr	-level Input evel Inputs ruction La	- Visuali	zation	Washer B	Good Good Good Eyeglasses			
-	Method	Pose	Supervision	n In Joint	Segmentation	Rotation	Translatio	on Pivot	Direction	Memory (GB)	Speed (FPS)↑		
	3DGCN [22]	<u>√</u>	√ v	<u>√</u>	94.05	11.61	<u>↓</u> <u>0.093</u>	 0.084	<u>9.78</u>	-	-		
]	NPCS-EPN [20]	\checkmark	\checkmark	\checkmark	-	11.05	0.080	0.147	15.20	-	-		
	EAP $[24]$		\checkmark		$\begin{array}{c} 66.45 \\ 68.46 \end{array}$	$44.12 \\ 10.44$	$0.242 \\ 0.121$	-0.162	- 23.09	- 9.23	- <1		
	Ours				80.70	8.10	0.129	<u>0.110</u>	6.63	2.31	41		

BackgroundModelReal-world DatasetExperimentsConclusionExperiments on the Real-world Dataset

- Compared with other **supervised** methods
- Still have rooms for improvement

A New Self-supervised Model

Focusing on articulated object pose estimation.

- Expand SE(3)-equivariant backbone usage range
- Simulation of joint movement
- Segmentation probability weighted chamfer distance

A New Real-world Dataset

Focusing on point cloud of articulated object with high-accuracy annotation.

- Multiple category / joint type
- Pose / joint states variance
- High accuracy annotations

____ Contact _____

cheyuchen.titech@gmai.com rfurukaward@gmail.com kanezaki@c.titech.ac.jp

Thank you for listening!

Automation & Knowledge Lab.