

PDiscoFormer: Relaxing Part Discovery Constraints with Vision Transformers

Ananthu Aniraj

Cassio Fraga Dantas

Dino lenco

Diego Marcos

Classification

Labelled information: image class labels

Related Work (Limitations)

Ingia -

- Restrictive constraints (assumptions) for discovered parts
 - Parts occur only once in an image
 - Parts are compact
- Designed for CNNs

Research Questions

- Can we use self-supervised ViTs for part discovery?
- Can we perform part discovery without restrictive constraints?

Possible solution: Use a total variation prior

Methodology - Architecture Overview

5

Quantitative Results

	CUB (%) K=16			PartImageNet OOD (%) K=50			Flowers (%) K=2	
Method	NMI (↑)	ARI (↑)	Top-1 Acc. (↑)	NMI (↑)	ARI (↑)	Top-1 Acc. (↑)	Fg. mIoU (↑)	Top-1 Acc. (↑)
Dino [1]	50.57	26.14	-	37.81	16.50	-	54.44	-
Huang [2]	43.92	21.10	85.93	10.19	1.05	73.20	17.26	92.86
PDiscoNet [3]	56.87	38.05	87.49	41.49	14.17	86.06	49.10	81.04
Pdisconet + ViT-B	68.63	43.41	84.04	29.48	27.80	89.69	13.18	97.40
Ours	73.38	55.83	88.72	46.29	62.21	91.01	69.59	99.64

[1] Amir, Shir, et al. "Deep vit features as dense visual descriptors." arXiv preprint arXiv:2112.05814 2.3 (2021): 4.

[2] Huang, Z., & Li, Y. (2020). Interpretable and accurate fine-grained recognition via region grouping. *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 8662–8672.

[3] van der Klis, R., Alaniz, S., Mancini, M., Dantas, C. F., Ienco, D., Akata, Z., & Marcos, D. (2023). PDiscoNet: Semantically consistent part discovery for fine-grained recognition. *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 1866–1876.

Qualitative Results (CUB) - 8 parts

Qualitative Results (PartImageNet) - 8 parts

Qualitative Results (Flowers) - 2 parts

Image

K Low

Medium X

K High

Effect of varying K (number of parts)

Ínría

Conclusion

- Novel approach for part discovery with self-supervised ViTs
- Total variation acts as a flexible part shape prior
- SOTA quantitative results for part discovery across datasets
- Good qualitative results

Thank you!

