

EUROPEAN CONFERENCE ON COMPUTER VISION

M I L A N O

MERLIN: Single-Shot Material Estimation and Relighting for Photometric Stereo

Ashish Tiwari CVIG Lab, IIT Gandhinagar

Satoshi Ikehata NII Japan

Shanmuganathan Raman CVIG Lab, IIT Gandhinagar

Objective

- MERLIN Material Estimation and ReLighting Network
- A physically-based global illumination-aware deep network

Objective

- Spatially varying bidirectional reflectance distribution function (svBRDF):
 - Diffuse albedo, normal, depth, and specular roughness
 - Jointly perform relighting through a single image.

Objective

- Compare the normal estimation accuracy using the relit images and their real counterparts.
- Take a step towards addressing photometric stereo from a single image via image-based relighting.

Background - Challenges

- Complex data acquisition
 - Carefully orchestrated setups with controlled lighting and precise calibration
- Exhaustive sampling of light space infeasible
 - Time, cost, and memory overhead
- Insufficient or sub-optimal sampling through limited data

- Can we leverage advancements in deep learning to generate differently illuminated images?
- Do these synthesized images always guarantee physical correctness?
- How can we validate the physical correctness of these relit images?

Relighting: $f_{rel} vs f_{BRDF}$

Global Illumination

Results: svBRDF Estimation

Input Image

Li et al.

Sang et al.

MERLIN (Ours)

Input Image

Li et al.

Sang et al.

MERLiN (Ours)

Input Image

Li e*t al.*

Sang et al.

MERLiN (Ours)

Photometric Stereo through Fast-NFPS [LUCES Dataset]

- Are the relit images physically correct?
- Are the normal estimates using multiple relit images better than those from a single image?
- How close are the results when compared to their real counterparts?

Input	Rel. Method	Bell	Ball	Buddha	Bunny	Die	Hippo	House	Cup	Owl	Jar	Queen	Squirrel	Bowl	Tool	Average
Single Image		12.03	10.75	21.26	12.02	9.51	11.23	40.16	19.68	17.62	9.37	20.93	19.94	12.79	21.59	17.06
32 Relit Images	Sang et al. [34]	10.09	9.52	19.17	12.69	9.21	10.08	39.42	19.59	17.29	9.79	22.19	19.67	11.96	19.29	16.43
	Li et al. [22]	10.33	9.89	18.96	12.03	10.04	10.11	36.88	19.34	16.17	10.51	21.31	19.32	12.23	19.77	16.21
	MERLiN (Ours)	9.51	9.12	18.27	11.71	9.12	10.02	36.91	19.27	16.97	9.82	20.18	19.05	11.98	19.31	15.8
32 Real Images	-	7.17	6.59	14.50	11.89	8.63	10.64	31.00	18.98	15.92	9.14	18.39	18.26	10.17	18.61	14.11

Photometric Stereo through SDM-UniPS [Smartphone Images]

Visit our project page for more details

Thank you!

