Frugal 3D Point Cloud Model Training via Progressive Near Point Filtering and Fused Aggregation

Donghyun Lee

🔀 eudh1206@snu.ac.kr

Yejin Lee

🔀 yejinlee@snu.ac.kr

Jae W. Lee

🔀 jaewlee@snu.ac.kr

Hongil Yoon

kongilyoon@google.com

European Conference on Computer Vision (ECCV 2024), Milan, Italy

Deep Neural Networks for 3D Point Cloud

- PointNet and PointNet++ are the first to apply DNN to raw 3D point cloud without preprocessing.
- Various ideas have been proposed, continuously enhancing the model performance and computational efficiency.

Figures from Qi, C.R. et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space"

Department of CSE

Challenges in 3D Point Cloud Model Training

- 🛕 Challenges

 \uparrow the size of models & datasets \rightarrow \uparrow training cost for 3D point cloud models

Performance Bottleneck-

Farthest Point Sampling (FPS): Takes up average **44.69%** of overall training time. *Aggregation:* Takes up average **22.84%** of overall training time.

Our Proposal-

#1. L-FPS: Eliminates redundant distance calculation of FPS in the training pipeline.

#2. Fused Aggregation: Reduce redundant memory accesses during aggregation.

Farthest Point Sampling - Observations

Department of CSE

Observation #1. FPS in the training process incurs a significant number of redundant distance calculations across epochs.

Observation #2. The key factor in achieving high-quality sampling is to ensure a **minimum spacing among the sampled points,** and this information can be obtained in advance, prior to training.

Technique #1. Lightweight FPS (L-FPS)

• We propose Lightweight FPS via Progressive Near Point Filtering.

Department of CSE

Aggregation - Observations

Observation #1. There are **redundant memory accesses** to intermediate values in forward and backward passes.

Department of CSE

Aggregation - Observations

Observation #2. Ineffectual computations are performed in the backward pass.

Department of CSE

Technique #2. Fused Aggregation

• We propose *Fused Aggregation*, which significantly reduces redundant memory accesses.

[Forward] Memory access reduced from " $3nd' \times n_{neigh} + nd'$ " to " $nd' \times n_{neigh} + 2nd'$ "

[Backward] Memory access reduced from " $3nd' \times n_{neigh} + 2nd'$ " to "4nd'"

Department of CSE

Evaluation

			2.0	⁻ used Aggrega	sed Aggregation			
Dataset	Model	Accuracy (Stdev.)		5.0	3.0	14≈≈3.22	≈3.05	
		Baseline	L-FPS					
S3DIS	PN++	63.19 (0.54)	63.39 (0.34)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	_			
	MB-L	69.82 (0.40)	69.76 (0.40)					
	MB-XL	70.67 (0.37)	70.74 (0.43)					_
ScanNet	PN++	59.42 (0.26)	59.54 (0.57)					_
	MB-L	70.52 (0.27)	70.54 (0.31)					
	MB-XL	71.78 (0.28)	71.74 (0.44)		HB-L MB-XL	PN++ MB	L MB-XL	Geo
			-	22012	Scan	Net	mean	

-NVIDIA RTX 3090

Accuracy Max 0.06 mIoU loss, potential mIoU gain of 0.2

Throughput 2.25x end-to-end speedup

Please contact to the author or refer to the full paper for more details <u>http://arc.snu.ac.kr/pubs/eccv24_pointcloud.pdf</u>

Frugal 3D Point Cloud Model Training via Progressive Near Point Filtering and Fused Aggregation

Donghyun Lee

Yejin Lee

eudh1206@snu.ac.kr 🔀 yejinlee@snu.ac.kr

Jae W. Lee

🔀 jaewlee@snu.ac.kr

Hongil Yoon

Mongilyoon@google.com

Sourced code available at https://github.com/SNU-ARC/Frugal PN Training

European Conference on Computer Vision (ECCV 2024), Milan, Italy