

Mask as Supervision: Leveraging Unified Mask Information for Unsupervised 3D Pose Estimation

Yuchen Yang^{1,2,*} Yu Qiao² Xiao Sun²

¹Fudan University ²Shanghai Artificial Intelligence Laboratory

* Work performed during his internship at Shanghai Artificial Intelligence Laboratory.

Introduction

> Why unsupervised pose estimation?

Problem Definition – 3D HPE

 $X = \phi(I)$

Given an input image *I*, determine a set of joints $X \in \mathbb{R}^{J \times 3}$. J represents the number of joints.

- annotate 3D data remains costly
- vast in-the-wild data for generalization

Motion Capture Environment

In-the-wild

Introduction

> Why mask as supervision?

For human, we can easily estimate keypoints from masks

- Rich priors embedded in mask
- Human priors already acquired

Introduction

> Why mask as supervision?

Coarse-to-fine framework Structure prior and shape constraint

 $M_{\text{Physo}}(x) = \psi(M_{Skel}(x))$

 ψ is implemented by a U-Net ended with a sigmoid function to make $M_{\rm Physo} \in (0,1)$

$$\mathcal{L} = \lambda_s \left| \left| G \odot \left(M^{gt} - M_{Skel}(x) \right) \right| \right|_2^2 + \lambda_p \left| \left| G \odot \left(M^{gt} - M_{Phso}(x) \right) \right| \right|_2^2$$

Geodesic Distance, denoted as G, can be computed using the fast marching method

with mask centroid as zero point.

 M^{gt} is the given ground truth mask as supervision.

 λ is the balancing factor for loss.

Experiments

SPP-based Method

- Step1: Predict landmarks $\mathbb{R}^{L \times 3} (L \ge 2 \times J)$
- Step2: Train a mapping network θ : $\mathbb{R}^{L \times 3} \rightarrow \mathbb{R}^{J \times 3}$
- Ignore left-right reversal problem
- Involve human annotation

Quantitative Results

Table 2: Comparison with state-of-the-art methods on MPI-INF-3DHP. MPJPE is in *cm*. Note that the first four methods use supervised post-processing and Sosa *et al.* [45] uses unpaired 2D pose to obtain interpretable keypoints.

Method	$PCK(\uparrow)$	$ AUC(\uparrow) $	$MPJPE(\downarrow)$
Denton et al. 6	-	-	22.28
Rhodin et al. 38	-	-	20.24
Honari et al. 14	-	-	20.95
Honari et al. 15	-	-	14.57
Sosa et al. 45	69.6	32.8	-
Ours	60.2 71.3	24.7	19.36
Ours (SPP)	71.3	42.1	13.07

Table 1: Comparison with state-of-the-art methods on Human3.6M. SPP: supervised post-processing. UP: unpaired ground truth pose or its prior, T: manually designed template. SF: supervised flip to eliminate left-right ambiguity. \dagger indicates our results do not consider the ambiguity in left-right reversal. $\dagger\dagger$ indicates we do not consider inner skeleton relationships and follow the common SPP settings. The best results in SPP and No SPP groups are marked in red and blue. MSE is in 2D % and MPJPEs are in mm.

Method		Settings			\mathbf{gs}	Metrics (\downarrow)			
		UP	Т	SF	Joint	MSE	MPJPE	N-MPJPE	P-MPJPE
	Thewlis et al. 50	×	×	1	2D	7.51	-	-	-
	Zhang et al. 57	×	×	\checkmark	2D	4.14	-	-	-
	Lorenz et al. [30]	×	×	1	2D	2.79	-	-	-
SPP	Suwajanakorn et al. [49]	×	×	×	3D	-	158.7	156.8	112.9
	Sun et al. [47]	×	×	×	3D	-	125.0	-	105.0
	Honari et al. 14	×	×	\checkmark	3D	-	100.3	99.3	74.9
	Honari et al. 15	×	×	×	3D	2.38	73.8	72.6	63.0
SPP	$ \mathbf{Ours}^{\dagger\dagger} $	×	×	×	3D	2.52	65.5	66.1	61.9
	Schmidtke et al. 40	×	1	1	2D	3.31	-	-	-
No CDD	Jakab et al. 20	\checkmark	×	\checkmark	2D	2.73	-	-	-
NO SPP	Sosa et al. 45	\checkmark	×	1	3D	-	-	-	96.4
	Kundu et al. 23	1	1	\checkmark	3D	-	99.2	-	-
	Kundu et al. 24	1	×	 Image: A start of the start of	3D	-	-	-	89.4
N. CDD	\mathbf{Ours}^{\dagger}	×	×	1	3D	3.17	85.6	85.6	79.3
NO SPP	Ours	×	×	×	3D	3.63	95.9	96.8	90.4

Experiments

Quantitative Results

Table 3: Ablation study on shape reconstruction.

Configurations	MPJPE $(\downarrow) A$	mbiguity Ratio (\downarrow)
wo ψ , G, Δ	118.1	48.73%
wo ψ , G	127.4	23.34%
wo G	102.6	22.83%
Full	95.9	20.33%

Ablation Study

w/o Structural Prior

(*supervised*) Post Processing

(unsupervised) Ours

- Effectiveness of Skeleton Mask

- Effectiveness of Physique Mask and the rest components

Experiments

Leveraging In-the-wild Data

Thanks!