

SCPNet: Unsupervised Cross-modal Homography Estimation via Intra-modal Self-supervised Learning

Runmin Zhang^{*}, Jun Ma^{*}, Si-Yuan Cao^{*†,} Lun Luo, Beinan Yu, Shu-Jie Chen, Junwei Li, and Hui-Liang Shen

https://github.com/RM-Zhang/SCPNet

Background

Previous supervised approaches

Background

Unsupervised situation

Background

Recent unsupervised approaches

Fail under large homography deformation and modality variance.

Motivation

Our intra-modal self-supervised learning

- Inspired by multitask learning, we introduce highly related tasks that provide direct supervision through intra-modal homography simulation.
- Training network to learn two-branch intra-modal homography.

Motivation

Pilot experiments and finding

The cross-modal homography estimation can be indirectly facilitated by training the weight-shared network using the simulated transform within the two modalities.

SCPNet: Overall Framework

Correlation-based Homography Estimation Network

- More clear network constraint
- Stronger knowledge

generalization ability

Consistent Feature Map Projector

- Consistent latent space projection
- Valid cross-modal supervision

Training/Inference Framework

Cross-modal intensity-based loss:

supervise the content similarity of consistent feature maps. $\mathcal{L}_{C} = \frac{\|\mathbf{P}_{A} - \mathbf{P}_{B,W}\|_{1}}{\|\mathbf{P}_{A} - \mathbf{P}_{B}\|_{1}}$ argmin $\mathcal{L}_{C}(\delta_{\zeta}(\mathbf{I}_{A}), \mathcal{W}(\delta_{\zeta}(\mathbf{I}_{B}), \psi_{\xi}(\delta_{\zeta}(\mathbf{I}_{A}), \delta_{\zeta}(\mathbf{I}_{B}))))$ $+\lambda \mathcal{L}_{S}(\psi_{\xi}(\delta_{\zeta}(\mathbf{I}_{A}), \delta_{\zeta}(\mathbf{I}_{A}')), \mathbf{H}_{GT,A})$ $+\lambda \mathcal{L}_{S}(\psi_{\xi}(\delta_{\zeta}(\mathbf{I}_{B}), \delta_{\zeta}(\mathbf{I}_{B}')), \mathbf{H}_{GT,B}).$

Intra-modal self-supervised loss:

supervise the homography matrix by the offsets of four corner points.

Ablation on GoogleMap dataset

Table 1: Ablation study of SCPNet. NC denotes the training is not converged. Self denotes intra-modal self-supervised learning, projection denotes consistent feature map projection, and cross denotes cross-modal intensity-based learning.

Setting	Self	Correlation	Projection	Cross	MACE↓
1	×	×	×	\checkmark	NC
2	×	\checkmark	×	\checkmark	NC
3	×	×	\checkmark	\checkmark	24.64
4	×	\checkmark	\checkmark	\checkmark	24.80
5	✓	×	×	×	13.06
6	✓	\checkmark	×	×	9.68
7	✓	×	\checkmark	×	10.01
8	✓	\checkmark	\checkmark	×	7.70
9	 ✓ 	\checkmark	\checkmark	\checkmark	4.35

Feature map visualization

The correlation visibly facilitates the consistent feature map generation by the direct constraint of inner product.

Concatenation

Correlation

Quantitative results on cross-modal datasets

Table 2: Quantitative results of our SCPNet and other approaches on cross-modal datasets. NC denotes the training is not converged. **Bold** indicates the best result among unsupervised methods.

Dataset		GoogleMap				Flash/no-flash			
Offset		Easy	Moderate	Hard	Mean	Easy	Moderate	Hard	Mean
Handcrafted	SIFT [32]	19.17	23.87	29.04	24.53	14.61	18.69	23.85	19.53
	ORB [36]	19.11	23.9	29.02	24.52	16.91	22.44	27.01	22.63
	DASC [26]	14.29	20.73	28.12	21.76	11.64	19.50	28.11	20.59
	RIFT [29]	10.43	15.46	21.93	16.55	11.22	13.95	21.66	16.21
Unsupervised	UDHN [35]	18.63	21.55	26.89	22.84	16.27	21.27	24.85	21.20
	CA-UDHN [44]	19.31	23.92	29.10	24.61	16.01	21.54	25.14	21.32
	biHomE [27]	NC	NC	\mathbf{NC}	\mathbf{NC}	8.24	12.56	14.04	11.86
	BasesHomo [41]	19.43	23.97	28.66	24.49	19.45	24.73	29.66	25.12
	UMF-CMGR [14]	19.22	24.01	29.02	24.60	17.99	22.43	28.40	23.49
	SCPNet (Ours)	3.60	4.44	4.85	4.35	1.80	2.33	3.59	2.67
Supervised	DHN [12]	7.06	6.82	7.00	6.93	5.28	6.13	7.51	6.42
	MHN [28]	4.75	5.00	5.34	5.06	3.18	6.55	5.81	5.24
	LocalTrans [37]	0.91	1.43	6.30	3.22	0.49	0.67	4.05	1.96
	IHN [6]	0.70	0.96	1.06	0.92	0.76	0.65	0.94	0.80
	RHWF [8]	0.62	0.68	0.93	0.76	0.79	0.68	0.53	0.65

Quantitative results on cross-spectral datasets

Table 3: Quantitative results of our SCPNet and other approaches on cross-spectral datasets. NC denotes the training is not converged. **Bold** indicates the best result among unsupervised methods.

Dataset		Harvard				RGB/NIR			
Offset		Easy	Moderate	Hard	Mean	Easy	Moderate	Hard	Mean
Handcrafted	SIFT [32]	17.27	21.49	26.70	22.30	15.54	23.90	28.81	24.40
	ORB [36]	18.61	23.06	28.29	23.82	17.75	22.84	27.01	23.00
	DASC [26]	11.85	18.29	25.03	19.05	13.50	17.91	25.73	19.78
	RIFT [29]	10.41	15.69	21.98	16.62	11.22	13.80	23.34	16.84
Unsupervised	UDHN [35]	18.03	22.20	26.55	22.69	18.54	23.27	27.16	23.43
	CA-UDHN [44]	18.77	23.64	28.55	24.14	18.31	23.88	28.66	24.12
	biHomE [27]	NC	NC	NC	NC	18.61	23.05	28.18	23.77
	BasesHomo [41]	19.77	24.20	28.46	24.57	19.23	23.44	28.89	24.41
	UMF-CMGR [14]	16.61	21.08	26.25	21.81	17.04	22.16	26.53	22.38
	SCPNet (Ours)	2.34	3.70	5.48	4.00	1.65	4.69	7.13	4.78
Supervised	DHN [12]	5.30	6.34	8.09	6.72	9.55	10.08	14.87	11.88
	MHN [28]	4.37	5.09	6.27	5.35	6.88	7.10	8.26	7.51
	LocalTrans [37]	0.27	0.43	4.58	2.04	0.53	0.77	5.15	2.47
	IHN [6]	1.40	1.72	2.03	1.75	1.25	2.14	2.21	1.90
	RHWF [8]	1.37	1.76	1.85	1.68	0.68	1.44	1.08	1.07

Qualitative results

Fig. 5: Qualitative homography estimation results on GoogleMap, Flash/no-flash, Harvard, and RGB/NIR datasets respectively. Green polygons denote the ground-truth homography deformation from I_B (source, the deformed image) to I_A (target). Red polygons denote the estimated homography deformation using different algorithms on the target images.

Conclusions

- We propose SCPNet, a novel unsupervised cross-modal homography estimation framework, which combines three key components.
- We devise the intra-modal Self-supervised learning to support the unsupervised learning framework, which mines the two-branch self-supervised information via applying simulated homography within the two modalities.
- We combine the Correlation and consistent feature map Projection to form a powerful unsupervised learning network architecture of SCPNet.
- SCPNet ranks top in the unsupervised homography estimation on cross-modal/spectral and manually-made inconsistent data under large offsets.

EUROPEAN CONFERENCE ON COMPUTER VISION

Thanks for watching!