Enhanced Motion Forecasting with Visual Relation Reasoning
Sungjune Kim¹ Hadam Baek¹ Seunggwan Lee¹ Hyung-gun Chi² Hyerin Lim³ Jinkyu Kim¹ Sangpil Kim¹ Sangpil Kim¹ **² Hyerin Lim³ Jinkyu Kim1**

Sungjune Kim¹ Hadam Baek¹ Seunggwan Lee¹ Hyung-gun Chi ¹Korea University **²**Purdue University **³**Hyundai Motor Group

Sangpil Kim¹

 $\mathcal{R}:$ RoIAlign Function $F: \text{Image Feature Pyramids}$ $\mathcal{N}(n)$: Set of paired agents with n

Motivation

Contributions

Vision-based autonomous driving is gaining more and more interests in the research field. However, explicit impact of visual information on motion/trajectory predictions are not explored in the literature. In this work, we specifically focus on how reasoning on the **visual relations** of road agents can improve the motion forecasting performance.

- This work is the first to explore the benefits of reasoning **explicit visual relational semantics** for motion forecasting.
- We propose an innovative **visual scene graph architecture** that extracts **pairwise visual relations** of road agents and learns higher-order connectivity in the visual space.
- **ViRR enhances the motion forecasting performance** and provides a solid baseline for further research on the visual understanding for motion forecasting.

Image Plane Mapping 3D Distance-based Threshold Distance-based Pairing 3D to 2D Conversion **1. Visual Relation Extraction A. 3D to 2D Conversion C. Visual Relation Feature Extraction**

Identify pairs that have potential to influence the motion based on the 3D distance threshold

$\mathbf{v}_n = \frac{\sum_{m \in \mathcal{N}(n)} \mathcal{R}(F, E)}{\mathcal{N}(F, E)}$ $\mathcal{N}(n)$

-
-

※ More results and analysis are reported in the paper. Check out the QR code above! ※ First author E-mail: ksjsungjune@korea.ac.kr

❖ **Single-order Convolution** $\mathbf{H}_n^{(l)} = \sigma(\mathbf{\hat{A}}^p \mathbf{X}^{(l)} \mathbf{W}_n^{(l)})$

B. 3D Distance-based Pairing

2. Higher-order Visual Relation Learning

● Utilize **RoIAlign technique** to extract the pairwise visual relation features ● Aggregate the pairwise features per agent, **transforming them into the agent node feature.**

❖ **Pairwise Visual Relation Extraction**

❖ **Agent Node Feature**

$$
\mathbf{X}^{(0)} = f\left(\begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_N \end{bmatrix}\right) \in \mathbb{R}^N
$$

- The extracted pairwise visual features pass linear mapping function and **act as the graph node features.**
- These features **encapsulate rich local relations** between the neighboring agents in a visual space.

A. 3D Distance-based Adjacency

- Local visual features **propagate globally** throughout the surrounding scenes.
- The information of the agents obtained in a single camera view can be **shared across agents in different viewpoints**.

B. Higher-order Graph Convolution

➔ ViRR requires the detection results from perception stage, **limiting its generalizability on**

- **single-stage pipelines.**
-