

Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction

Alexander Timans

Amsterdam Machine Learning Lab, University of Amsterdam In collab. with the Bosch Center for Al

October 1, 2024

ECCV 2024 Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction

Christoph-Nikolas Straehle,

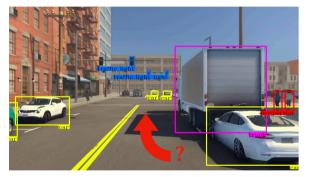
Bosch Center for Al

Eric Nalisnick. Johns Hopkins University

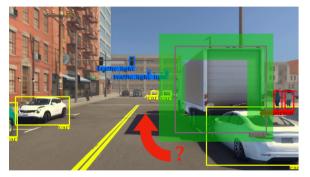
Kaspar Sakmann,

Bosch Center for Al

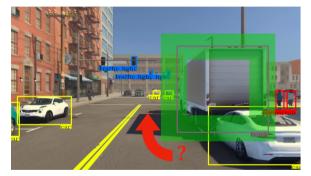
Collaborators



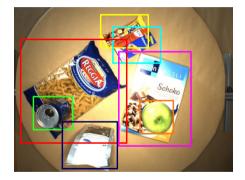
https://developer.nvidia.com/blog/deploying-a-scalable-object-detection-pipeline-the-inferencing-process-part-2/



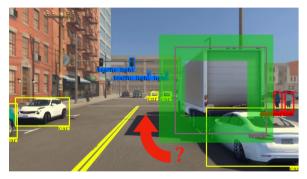
https://developer.nvidia.com/blog/deploying-a-scalable-object-detection-pipeline-the-inferencing-process-part-2/



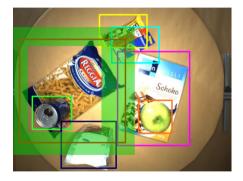
https://developer.nvidia.com/blog/deploying-a-scalable-object-detection-pipeline-the-inferencing-process-part-2/



https://www.mvtec.com/de/technologien/deeplearning/deep-learning-methoden/objektdetektion



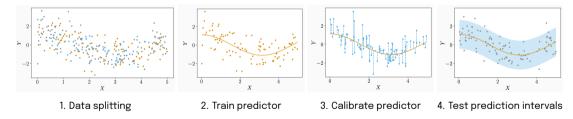
https://developer.nvidia.com/blog/deploying-a-scalable-object-detection-pipeline-the-inferencing-process-part-2/



https://research.nvidia.com/publication/2018-09-deepobject-pose-estimation-semantic-robotic-graspinghousehold-objects

Statistical framework for uncertainty quantification via prediction sets or intervals.

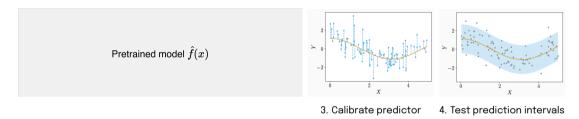
Statistical framework for uncertainty quantification via prediction sets or intervals.



Images from Zaffran, Margaux, et al. Adaptive conformal predictions for time series. ICML, 2022.

Conformal prediction

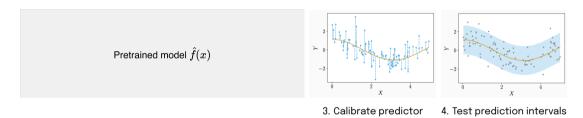
Statistical framework for uncertainty quantification via prediction sets or intervals.



Images from Zaffran, Margaux, et al. Adaptive conformal predictions for time series. ICML, 2022.

Conformal prediction

Statistical framework for uncertainty quantification via prediction sets or intervals.



Images from Zaffran, Margaux, et al. Adaptive conformal predictions for time series. ICML, 2022.

Coverage guarantee (Vovk, 2005)

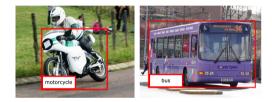
"On average, the conformal prediction interval contains the true test point with user-defined probability $(1-\alpha)$ "

Application to object detection

Data

Image: X_i

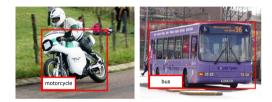
Object bounding box: $Y_i = (c^1, c^2, c^3, c^4, \ell)_i$ One image \longrightarrow multiple objects and classes



Application to object detection

Data

Image: X_i Object bounding box: $Y_i = (c^1, c^2, c^3, c^4, \ell)_i$ One image \longrightarrow multiple objects and classes



Our coverage guarantee for bounding boxes

"On average **per object class**, the conformal bounding box interval covers the object's true bounding box with user-defined probability $(1-\alpha)$ "

Protecting against misclassification

Challenge: The object's class label prediction also exhibits uncertainty, which we want to incorporate when constructing the bounding box intervals.

Protecting against misclassification

Challenge: The object's class label prediction also exhibits uncertainty, which we want to incorporate when constructing the bounding box intervals.

Solution: First quantify predictive uncertainty in class labels with conformal prediction (again), resulting in a **two-step** conformal approach robust to object misclassification.

Protecting against misclassification

Challenge: The object's class label prediction also exhibits uncertainty, which we want to incorporate when constructing the bounding box intervals.

Solution: First quantify predictive uncertainty in class labels with conformal prediction (again), resulting in a **two-step** conformal approach robust to object misclassification.

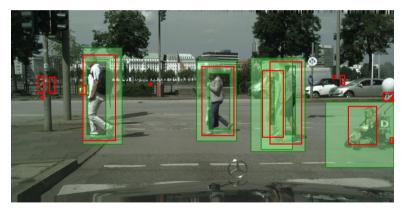
Pass test image through predictor.

Step 1: Get conformal label set.

Step 2: Use Step 1 to build conformal bounding box interval.

Results: visual

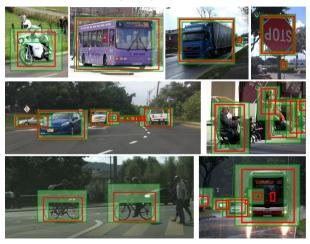
Bounding box intervals are tight and scale adaptively with class instances.



On Cityscapes test image for class 'person'.

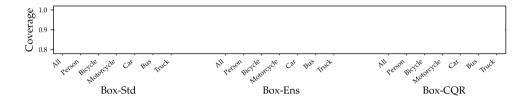
Results: visual

More visuals for classes on COCO, Cityscapes and BDD100k.

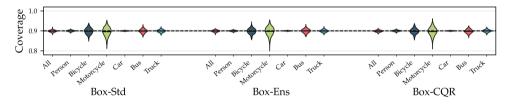


ECCV 2024

Check: Is the coverage guarantee of $(1 - \alpha) = 90\%$ satisfied?



Yes, guarantees hold per class on all datasets.



Empirical coverage vs. target coverage $(1 - \alpha) = 0.9$ for BDD100k.

Check: Are the guarantees model-agnostic?

Yes, guarantees hold across different 'black-box' pretrained object detectors.

		Two-sided box intervals		One-sided box intervals	
Uncertainty method	Object detector	MPIW	Cov	MPIW	Cov
DeepEns GaussianYOLO	5× Faster R-CNN YOLOv3	$\begin{array}{c} 12.31 \pm 0.47 \\ 7.00 \pm 0.14 \end{array}$	$\begin{array}{c} 0.21 \pm 0.01 \\ 0.08 \pm 0.01 \end{array}$	$\begin{array}{c} 74.15 \pm 2.01 \\ 87.07 \pm 4.25 \end{array}$	$\begin{array}{c} 0.49 \pm 0.01 \\ 0.35 \pm 0.01 \end{array}$
Andéol <i>et al.</i> (Best)	Faster R-CNN YOLOv3 DETR Sparse R-CNN	N/A N/A N/A N/A		$\begin{array}{c} 87.62 \pm 1.79 \\ 107.93 \pm 4.85 \\ 82.21 \pm 1.64 \\ 79.35 \pm 1.78 \end{array}$	$\begin{array}{c} 0.91 \pm 0.01 \\ 0.92 \pm 0.02 \\ 0.90 \pm 0.01 \\ 0.91 \pm 0.01 \end{array}$
Box-Std (Ours)	Faster R-CNN YOLOv3 DETR Sparse R-CNN	$\begin{array}{c} 55.47 \pm 2.97 \\ 61.73 \pm 3.66 \\ 45.34 \pm 3.33 \\ 41.92 \pm 2.16 \end{array}$	$\begin{array}{c} 0.88 \pm 0.02 \\ 0.88 \pm 0.02 \\ 0.88 \pm 0.02 \\ 0.89 \pm 0.01 \end{array}$	$\begin{array}{c} 85.42 \pm 1.99 \\ 103.12 \pm 3.95 \\ 80.57 \pm 1.78 \\ 77.33 \pm 1.72 \end{array}$	$\begin{array}{c} 0.88 \pm 0.02 \\ 0.88 \pm 0.02 \\ 0.88 \pm 0.01 \\ 0.89 \pm 0.01 \end{array}$

Conclusion

If your point estimates are alone and in need of reliable uncertainty intervals, consider **conformal prediction** – model-agnostic, distribution-free and efficient.

COCO-val image #522

Thanks for your attention!

To learn more:

Visit our poster in the next session (Poster session #1, Tue 10:30 - 12:30)

Take a look at our paper on arXiv

Catch me for a chat 🙂

https://alextimans.github.io/

ECCV 2024

The conformal recipe

Given:

- a prediction model \hat{f} fitted on some training dataset \mathcal{D}_{train}
- an unseen calibration dataset $\{(X_i,Y_i)\}_{i=1}^n$ and an unseen test sample (X_{n+1},Y_{n+1})
- a scoring function $s : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and resulting scores $s_i = s(X_i, Y_i), i = 1, \dots, n$
- a conformal quantile \hat{q} defined as the $\left\lceil \frac{(n+1)(1-\alpha)}{n} \right\rceil$ quantile of s_1, \ldots, s_n
- a desired coverage rate $(1 \alpha) \in [0, 1]$
- a prediction set for X defined as $\hat{C}(X) = \{y \in \mathcal{Y} : s(X, y) \leq \hat{q}\}$

Marginal coverage guarantee

Assuming the samples $\{(X_i, Y_i)\}_{i=1}^{n+1}$ are exchangeable, we have that

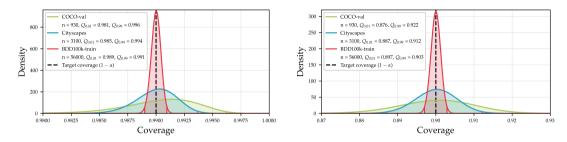
$$\mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1})) \ge 1 - \alpha.$$

Proof (simplified notation)

- Without loss of generality assume sorted scores $s_1 < \cdots < s_n$
- By exchangeability of $\{(X_i, Y_i)\}_{i=1}^{n+1}$ we observe that for any choice of $k \in \{1, ..., n\}$ we have $\mathbb{P}(s_{n+1} \leq s_k) = \frac{k}{n+1}$
- Then, it follows:

$$\mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1})) = \mathbb{P}(s_{n+1} \le \hat{q})$$

= $\mathbb{P}(s_{n+1} \le s_{\lceil (n+1)(1-\alpha)\rceil})$
= $\left\lceil \frac{(n+1)(1-\alpha)}{n+1} \right\rceil$
 $\ge \frac{(n+1)(1-\alpha)}{n+1} = 1-\alpha.$



Coverage distribution conformal label sets

Coverage distribution conformal box intervals