ECCV 2024

Efficient Diffusion-Driven Corruption Editor for Test-Time Adaptation

Yeongtak Oh*, Jonghyun Lee*, Jooyoung Choi, Dahuin Jung, Uiwon Hwang[†], Sungroh Yoon[†]

Data Science & Artificial Intelligence Laboratory Electrical and Computer Engineering Seoul National University

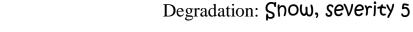
* Equal contribution, † Corresponding authors

Code: https://github.com/0yt9306/Decorruptor

TL;DR

- We propose image editing pipelines to revert unknown corrupted images into clean ones at test-time
- Performance
 - To robustify a diffusion model, we propose corruption modeling scheme for inductive fine-tuning
- Efficiency
 - 1. We leverage pixel space diffusion \rightarrow latent space diffusion : Improve time & memory efficiency
 - 2. We distill diffusion model \rightarrow consistency model : Improve time efficiency (20 steps -> ~4 steps)





Contents

- Introduction
- Related Works
- Proposed Method
 - 1) Decorruptor-DPM
 - 2) Decorruptor-CM

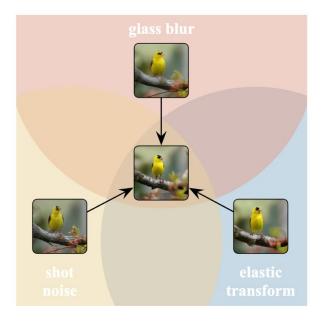
• Experimental Results

- 1) Qualitative Results
- 2) Quantitative Results
- 3) Further Analysis
- Conclusions

Introduction

Test-Time Adaptation (TTA)

- Training data: $\mathcal{D}^{tr} = \{x^{tr}, y^{tr}\}$, Test data: $\mathcal{D}^{te} = \{x^{te}, y^{te}\}$
- However, y^{te} is not accessible and the source model is pre-trained only with \mathcal{D}^{tr}
- Using small-set of D^{te} , TTA aims to efficiently boost the model performance at test-time
- Diffusion-based TTA Methods * NFE : Neural Function Evaluation
 - DDA aims to update the input images from all targets to the source domain
 - DDA enables direct use of the source classifier without adaptation
 - > It only supports <u>pixel-level</u>, large NFEs to revert the corrupt images

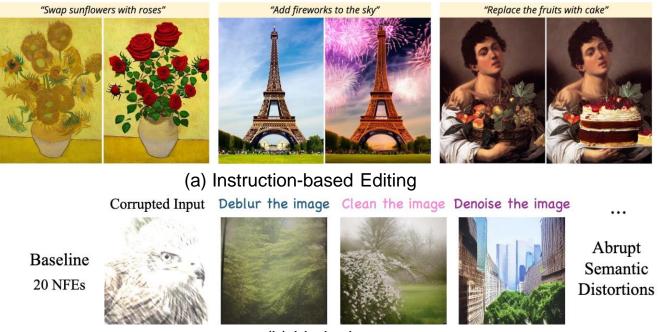


Introduction

• Diffusion-based Image Editing Methods

- InstructPix2Pix(IP2P) enables image editing through instruction fine-tuning
- However, SD-based IP2P cannot generate de-corrupted (test-time corrupted) image
- Thus, we robustify diffusion models to be ready for the incoming unknown corruptions at the test-time

* SD: Stable Diffusion



(b) Limitations

Related Works

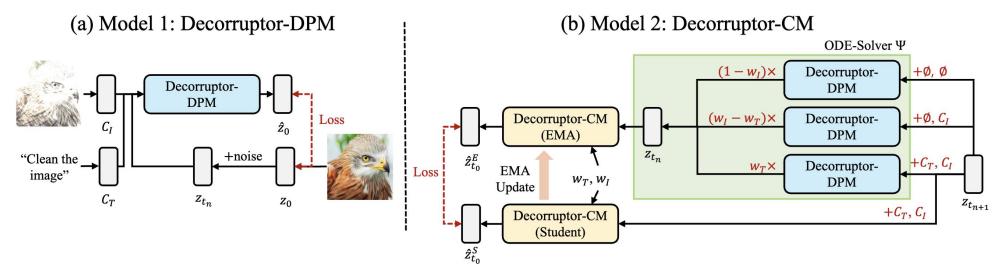
• Comparisons with Other Diffusion-based Variants

- Editing) We enable image editing for incoming unknown corruption
- IR) We do not require any pre-defined corruptions or degradation kernels at test time
- TTA) We support highly efficient instant decorruption

TTA requirements		Image Editing	Image Reconstruction		Image Decorruption		
		InstructPix2Pix [5]	DDRM_[27]	DPS_[8]	DDA [14]	Ours (DPM / CM)	
Efficiency	NFEs	20	20	1000	50	20 / 4	
(Minimal overhead)	Noise space	Latent space	Pixel space	Pixel space	Pixel space	Latent space	
Generalization	Degradation type	×	Pre-defined	Pre-defined	Unseen	Unseen	
Performance	IN-C Acc (%)	×	×	×	29.7	30.5 / 32.8	
	IN- \overline{C} Acc (%)	×	×	×	29.4	41.8 / 47.1	

Proposed Method : Overview of Decorruptor

• Overall Pipelines



- Key Takeaways
 - a) We adopt *IP2P pipeline to receive both text and image inputs*
 - b) Universal prompt remains fixed *during both training/inference phases*
 - c) Decorruptor-DPM/CM model can be considered as an *img2img translation model*

Proposed Method : Decorruptor-DPM

Corruption Modeling Scheme ٠

(a) Connection Modeling with Various Corruptions

(c) Corrupted Images

8

- Key Takeaways •
 - We perform data augmentation in an on-the-fly manner with class-agnostic images (i.e., fractals) a
 - This robustification of diffusion models has not been previously explored (using PIXMIX, SimSiam aug) b)
 - We broaden diffusion model's manifold by *fine-tuning to edit corrupted inputs into clean ones* C)

Proposed Method : Decorruptor-DPM

• Scheduling Image Guidance Scale

Training
$$\mathcal{L}(\theta) = \mathbb{E}_{z \sim \mathcal{E}(x), c_T, \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(\mathbf{z}_t, t, c_T, c_I)\|^2 \right]$$

Inference
$$\hat{\epsilon}_{\theta}(z_t, t, c_I, c_T) = \epsilon_{\theta}(z_t, t, \emptyset, \emptyset) + \omega_I(t)(\epsilon_{\theta}(z_t, t, c_I, \emptyset) - \epsilon_{\theta}(z_t, t, \emptyset, \emptyset)) + \omega_T(\epsilon_{\theta}(z_t, t, c_I, c_T) - \epsilon_{\theta}(z_t, t, c_I, \emptyset)).$$

- Key Takeaways
 - a) At training time, we fine-tune U-Net of the diffusion model *initialized from the checkpoint of SD-v1.5*
 - b) At inference time, we utilized 20 DDIM steps and sqrt noise scheduling for the image guidance
 - c) As we receive corrupted input images, ω_I is sampled from 1.8 to 0 for $t \in [T, 0]$

Proposed Method : Decorruptor-CM

Integrate Multi-Modal Guidance while Diffusion Distillation

$$\Gamma raining \qquad \mathcal{L}_{LCD}(\theta, \theta^{-}; \Psi) = \mathbb{E}_{z_{t}, \omega, n} \left[d \left(f_{\theta}(z_{t_{n+1}}, \omega, c, t_{n+1}), f_{\theta^{-}}(\hat{z}_{t_{n}}^{\Psi, \omega_{I}, \omega_{T}}, \omega, c, t_{n}) \right) \right]$$

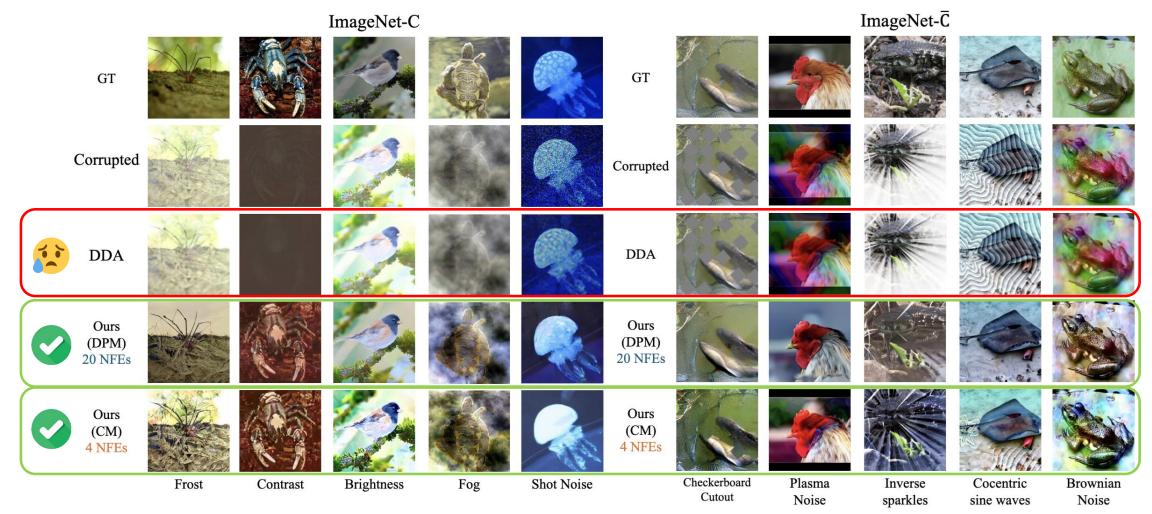
Inference
$$\hat{z}_{t_n}^{\Psi,\omega_I,\omega_T} - z_{t_{n+1}} \approx \Psi(z_{t_{n+1}}, t_{n+1}, t_n, \emptyset, \emptyset)$$

 $+ \omega_I(\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c_I, \emptyset) - \Psi(z_{t_{n+1}}, t_{n+1}, t_n, \emptyset, \emptyset))$
 $+ \omega_T(\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c_I, c_T) - \Psi(z_{t_{n+1}}, t_{n+1}, t_n, c_I, \emptyset))$

- Key Takeaways
 - a) We distill CM on the same dataset (ImageNet) employed during the DPM training phase
 - b) At training time, we condition both learnable multi-modal guidance scales
 - c) At inference time, multi-modal CFG scales ω_I and ω_T obviates the need for guidance scheduling

Experimental Results

• Qualitative Results of Image Editing for Unknown Corruptions



Method		Runtime (s	s/sample)↓	Memor	ry (MB)↓ II	N-C Acc. ([%)↑ IN-Ē A	Acc. (%)↑
	MEMO	<u>0.</u> 4	<u>41</u>	7	456	24.7		-
	DDA	19	.5	10320	+ 2340	29.7	2	29.4
140x faster!	Decorruptor-DPM	0.4	42	4602	+ 2340	$\underline{30.5}$	4	1.8
	4×Decorruptor-CM	0. :	14	4958	+ 2383	32.8	4	7.1
	Method		ResNet-50	Swin-T	ConvNeXt-7	Swin-B	ConvNeXt-B	_
	Source-Only		18.7	33.1	39.3	40.5	45.6	_
	MEMO (0.41s)		24.7	29.5	37.8	37.0	45.8	
	DiffPure (27.3s)		16.8	24.8	28.8	28.9	32.7	
	DDA (19.5s)		29.7	40.0	$\underline{44.2}$	44.5	$\underline{49.4}$	
	Decorruptor-D	PM (0.42s)	30.5	37.8	42.2	42.5	46.6	
	4×Decorruptor	r-CM (0.14s)	<u>32.8</u>	39.7	44.0	44.7	48.6	
	8×Decorrupto	r-CM (0.25s)	34.2	41.1	$\boldsymbol{45.2}$	46.1	49.8	

(a) ImageNet-C

• Performances on OOD Datasets

	Source -	+ DDA	+ DPM	$+ 4 \times CM$	PIXMIX	X + DDA	+ DPM $-$	- 4×CM
VISDA-2021 acc (%)	35.7	40.2	40.9	42.0	44.0	45.4	45.6	46.1
ImageNet-A acc (%)	0.0	0.5	$\underline{1.9}$	2.7	6.3	5.2 (-1.1)	$\underline{8.1}$	9.8

Experimental Results

Further Analysis •

Effects of Our Multi-Modal Guidance Scaling on Consistency Model a)

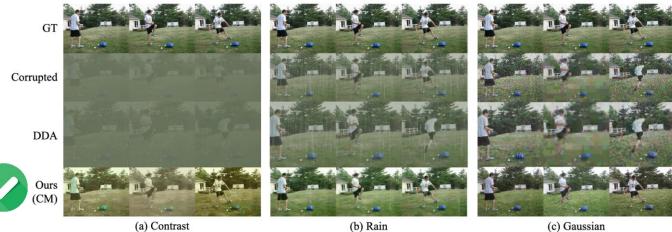
Corrupted Images

(a) Ours (w/ multi-modal guidance conditioning)

(b) Fixed image guidance scale scheduling

(c) Not using image guidance scale scheduling

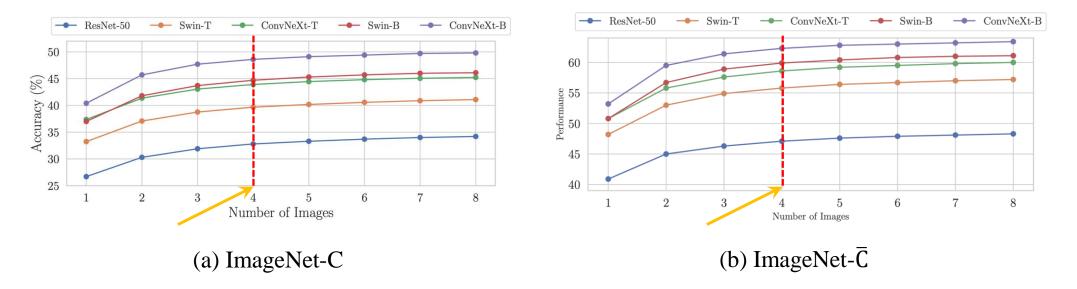
b) Video Decorruption Results



• Further Analysis

c) Ensemble Stabilities: The number of ensembles to inference on TTA benchmarks

- > The more ensembling samples, we can get the higher accuracies
- > We set <u>4 as the default number</u> of ensembling samples



Conclusions

- We propose Decorruptor-DPM, a latent diffusion model with *efficient memory and time utilization*
 - > Revamp previous methods impractical for real-world usage due to its slow processing speed
- We introduce Decorruptor-CM, employing consistency distillation *to accelerate input updates further*
 - Surpassing the baseline diffusion-based approach in speed by <u>100 times</u> while <u>delivering superior performance</u>.
- We expect our novel corruption editing pipeline provides *new insights for image-update TTA*

See you at Poster Session 4! Wed 2 Oct 11:30 p.m. KST — 1:30 a.m.

< Project Page >