

ELM: Embodied Understanding of Driving Scenes (A 60 min Talk) Online August 2024

Yunsong Zhou, Shanghai Jiao Tong University / Shanghai Al Lab

Outline

- Introduction to End-to-end Autonomous Driving
 - O Modular vs End-to-end
 - O Industry Applications
 - O Research Roadmap
- Challenges
- Mainstream Lineup of Work
 - O Embodied Understanding of Driving Scenarios

Introduction

End-to-end Autonomous Driving

Problem setting | Autonomous Driving (AD) Tasks

Challenge | Various weathers, illuminations, and scenarios

Motivation | Why End-to-end (E2E) Autonomous Driving?

Trending | End-to-end AD (E2EAD)

v12 is reserved for when FSD is end-to-end AI, from images in to steering, brakes & acceleration out.

E2E Robot

Industry

Tesla Optimus 🔅 🔽 @Tesla_Optimus · Sep 24 Optimus can now sort objects autonomously 🧟

Its neural network is trained fully end-to-end: video in, controls out.

This end to end neural network approach will result in the safest, the most competent, the most comfortable, the most efficient, and overall, the best self-driving system ever produced. It's going to be very hard to beat it with anything else!

Elon Musk 🔗 🛛 @elonmusk · Aug 26 twitter.com/i/broadcasts/1...

No hard-code. Completely learning on its own. End-to-end, video to neural network to controls. Don't need map data at all, only coordinates! No cellular connection needed.

My Opinion

- Probably e2e as a backup module
- Massive high-quality data prevail
- Mapless is promising and feasible

Open AriveLab

CNBC Report | Discussion Thread on Zhihu | Live Stream

Application | End-to-end Autonomous Driving Industry Tesla FSD Beta v12.12 rolls Tesla website out to customers TESLA The End-to-End Approach in Autonomous Driving Mobileye at CES 2024 mobileye Two types of end-to-end implementation: **Next-Generation** Automated Driving: the Wayve website Power of End-to-End AI 多模块走向端到端融合,"轻"车更熟路 DeepRoute (元戎启行) at GTC 2024 端到端感知决策大模型 П Mi (小米) Automobile Technological Event 小米自研 全球首次应用于量产车 2024

通用的端到端具身智能体进化方法

Open riveLab

feedback

Strong Agent

Roadmap | End-to-end Autonomous Driving

Summary (1/2)

- Carla leaderboard gets much improved over the years. With new mapping / routes (Carla v2) and nuPlan benchmark, this field got so much to do.
- RL method is prevalent in the beginning (since it's natural)
- Input modality and more advanced structure boosts the performance

Roadmap | End-to-end Autonomous Driving

Summary (2/2)

- The First Neural Net based method dates back to 2016 using Imitation Learning
- Learned policy from Experts (IL), with data augmentation, could prevail in performance
- Interpretability, with explicit design in the network stands out recently
- End-to-end design comes to obsess many merits in previous attempt

Analogy to General Domains in CV/NLP/Robotics

	Domain	Method Abbreviation	Institute / Time	Data Scale	Public?
General Large Models	NLP	GPT-4	OpenAI / 2023.3	13T tokens	×
	(LLM)	LLaMA 2	Meta / 2023.7	2T tokens	\checkmark
	Vision	ViT-22B G	Google / 2023.2	4B images	×
	Vision Language (LLM backend)	BLIP-2	Salesforce / 2023.1	129M images-text pairs	
	-	DriveAGI (GenAD)	OpenDriveLab / 2023.11	2000 h videos (public)	\checkmark
Inductrial	Autonomous Driving	GAIA-1	Wayve / 2023.6	4700 h videos	×
Industrial Large	nuScenes: 4.5h	World Model Demo	Tesla / 2023.6	Unknown (Large-scale)	×
(Application)	Pohotics	PaLM-E	Google / 2023.3	Unknown (Large-scale)	×
· · · · · · · · · · · · · · · · · · ·	(LLM backend)	RT-2	DeepMind / 2023.7	1B img-text pairs / 13 robots / 17 months	×

If taken seriously for AD: lots of compute (at least 200 A100s) + massive amount of data (at least 10k hours of diverse, high-quality data)

Trending in E2EAD | Driving + Language

Trending in E2EAD | Driving + Language

Explainable Driving

Behavior

behavior.

Dataset	Source Dataset	# Frames	Avg. captions / QA per annotated frame	Total captions / QA in Perception	Total captions / QA in Prediction	Total captions / QA in Planning	Logic among captions/QA pairs
nuScenes-QA [47]	nuScenes	34,149	13.5	460k**	×	×	None
nuPrompt [66]	nuScenes	34,149	1.0	35k*	X	×	None
HAD [31]	HDD	25,549	1.8	25k	X	20k	None
BDD-X [30]	BDD	26,228	1	26k	X	X	None
DRAMA [40]	DRAMA	17,785	5.8	85k	X	17k	Chain
Rank2Tell [51]	Rank2Tell	5,800	8	-	X	1 	Chain
DriveLM-nuScenes	nuScenes	4,871	91.4	144k*	153k	146k	Graph
DriveLM-CARLA	CARLA	183,373	20.5	2.46M**	578k**	714k**	Graph

Table 1. Comparison of DriveLM-nuScenes & -CARLA with Existing Datasets. * indicates semi-rule-based labeling (w/ human annotators), ** indicates fully-rule-based (no human annotators), and - means publicly unavailable. DriveLM-Data significant advances annotation quantity, comprehensiveness (covering perception, prediction and planning), and logic (chain to graph).

Rank2Tell – reasoning for the rank of objects' importance level.

Talk2Car – a description of how to reach the goal point from current position.

DRAMA – caption about important objects and future decision.

DriveLM — perception-predictionplanning driving description with graph VQA.

For now, language into driving is marginal (trivial). Serves only as a "commentator". We haven't verified (or seen) the effectiveness.

HAD – human-to-vehicle driving

Insight | VLM in Robotics / Embodied AI

- How vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control
- Goal: to boost generalization and enable emergent semantic reasoning

Key ingredient(s): huge amount of data (not public) + language prompt to dissect tasks

- Robotic tasks naturally fits into language at dissecting tasks step by step using language (prompt).
- Is it the <u>right way</u> to open the language tool box as does in Robotics for Autonomous Driving?

Grand Challenge 2024

Attention from All Sides **CVPR 2023 AD Challenge - Recap** 🕺 NVIDIA DATA CENTER DRIVING GAMING HEALTHCARE https://opendrivelab.com/AD23Challenge.html **NVIDIA Researc** Overview **Competing Teams** Award at CVPR 音看翻創 New work introduces sta Bosch Center for Artificial Intelligenc (BCAI) (*** 54.190 人關注 (+關注) **Tracks** Internationalization 瀏覽完整頁面 旷视科技 🔮 己认证账号 ◎ 你经常看 自动驾驶 相关内容 **OpenLane Topology** 近日,为期三个月的 CVPR 2023 自动驾驶国际挑战赛比赛结果揭晓。旷视研究院在OpenLane Topology 赛道中击败 30 余支国内外队伍,夺得冠军 **Online HD Map Construction 3D Occupancy Prediction** (* Team 42dot Wins 2nd Place in the Autonomous Driving Challenge at CVPR 2023 nuPlan Planning ys: International Teams **Challenges of Mass Production** Advance AV Reseat 2023 nuPlan Challe **Autonomous Driving in China** > 2.3k **Submissions** 110 **Teams** 277 And the Recent Progress from Xpeng Motors in 2023 MEGVIII时视 **Submissions** Patrick Langechuan Liu · Follow *** ards Data Science - 7 min read - Jun 19 2023 12do1 (\mathfrak{P}) 実はTuringでCVPR Challenge 2023参加していました― > 15 自分はTrack 1のOpenLane Topologyという走行レーンや交通信号機・標識 の検出や、それら間にトポロジー(意味的な接続性)があるか分類するタス oerial College クにチームで参加」 Contries / Regions 什么样的方案,夺得了CVPR自动驾驶挑战赛冠军等 TURING 🗯 Meituan **ARGO** zongmu 机器之心 2023-06-19 19:21 发表于北京 雷峰网 63 > 68k Яндекс 你经常看自动驾驶相关内容 HIKVISION ZHEJIANG LAB 自动驾驶圈正被"去高精地图"风暴席卷 S NIO Website / Social 今年6月中旬,一年一度的AI顶会 CVPR 2023 在加拿大举行,同期还有场自动驾驶国际挑战赛,这 Media Views 场挑战赛吸引了来自15个国家的270多支队伍参赛,有2300多件作品投稿,赛况激烈 ³⁶Kr BDD/ AV2 Ours Apollo 旷视刷榜了什么自动驾驶比赛? AV2 Wavmo Carla Huawei Ours Berkeley 2022 2022 2023 2022 2020 2023 旷视研究院参加的这个比赛,是CVPR 2023专门面向自动驾驶感知决策系统设立的挑战赛 2022

CVPR 2024 Autonomous Grand Challenge

120,000 USD Bonus!

https://opendrivelab.com/challenge2024/

ELM: Embodied Understanding of Driving Scenarios

Embodied Understanding of Driving Scenarios

 Yunsong Zhou^{1,2*} Linyan Huang^{1*} Qingwen Bu^{1,2*} Jia Zeng¹ Tianyu Li^{1,3} Hang Qiu⁴ Hongzi Zhu^{2†} Minyi Guo² Yu Qiao¹ Hongyang Li^{1†}
 ¹ OpenDriveLab, Shanghai AI Lab ² Shanghai Jiao Tong University ³ Fudan University ⁴ University of California, Riverside

Credits: <u>https://github.com/OpenDriveLab/EL</u> <u>M</u>, https://arxiv.org/abs/2403.04593

Open PriveLab

Introduction

Embodied Understanding

This makes transfer of internet scale knowledge to robots more direct, and may provide a more scalable class of approaches in the future.

Interacting with environments & reasoning via common sense

oush the blue block to the tabasco

"

Credits: Google DeepMind, RT-2, RT-X, PaLM-E

Embodied Understanding

Interacting with environments & reasoning via common sense

Vision Language Models

Only focus on 2D domain, *i.e.*, **description**

Credits: DriveLM; Open-sourced Data Ecosystem in Autonomous Driving

Embodied Understanding

Interacting with environments & reasoning via common sense

- Task: embodied understanding of driving scenarios.
- Capabilities: description, localization, memorization, forecasting.
- Model: **ELM** with long-horizon **space** and **time**.
- Benchmark: A spectrum of tasks in an embodiment setting.

Vision Language Models

Only focus on 2D domain, *i.e.*, **description**

Embodied Language Model

Expanding vanilla VLMs to driving scenes

Embodied Understanding

Interacting with environments & reasoning via common sense

Vision Language Models

Only focus on 2D domain, *i.e.*, **description**

- Task: embodied understanding of driving scenarios.
- Capabilities: description, **localization**, **memorization**, **forecasting**.
- Model: ELM with long-horizon space and time.
- Benchmark: A spectrum of tasks in an embodiment setting.

Embodied Language Model

Expanding Vanilla VLMs to Driving Scenes

At A Glance

We expand a wide spectrum of new tasks to fully leverage large language models in an embodiment setting

ELM - The Big Picture

Data-centric Pipeline

Data Collection

Data Generation

Partial photo by courtesy of online resources.

Universal Foundation Model for autonomous driving

Pre-training DriveCore

How to formulate? What's the objective goal? **Space** and **time**?

Benchmark

Autonomous Driving

(nuScenes)

Robotics (Ego4D)

Pipeline

Data Collecting

Data Status

Method	Pre-train Data	#	Time	City	Anno
LLaVA [48]	COCO [47]	150K	-	-	Des
VideoChat [44]	Self-Collected	18K	-	-	Des
Vid-ChatGPT [56]	ActivityNet-200 [6]	100K	-	-	Des
nuScences-QA [61]	nuScenes [7]	460K	5.5	2	Des
DriveGPT4 [82]	BDD-X [38]	28K	77	4	Des
LLM-driver [11]	Self-Collected	160K	-	-	Des
	nuScenes [7]	7.4M	5.5	2	Des, Lo
FIM (Ours)	Waymo [70]	450K	6.4	3	Des
ELM (Ours)	YouTube	1.1M	1474	700	Des
	Ego4D [25]	300K	1638	74	Des

(b) in USA

(c) in China

Open riveLab

Discarded

Annotation - Quality check

Examples of Description Labels

Raw: The scene is a busy city street with a red traffic light, a McDonald's restaurant, and a crosswalk. The traffic elements include traffic lights, cars, and pedestrians. The ego-vehicle is **traveling in the left lane**, and the traffic light is red-..

Refined: The scene is a busy city street with a red traffic light, a McDonald's restaurant, and a crosswalk. The traffic elements include traffic lights, cars, and pedestrians. The ego-vehicle is traveling in the right lane, and the traffic light is red...

Q: How should the ego-vehicle drive at this point?

A: The ego-vehicle should follow the traffic light's instructions and wait for the light to turn green before proceeding.

Raw: The driving scene in the image features a car driving under a bridge, with a truck carrying a load of wood in the background. The car is **traveling in the left lane**, and it appears to be moving in the same direction as the truck.

Refined: The driving scene in the image features a car driving under a bridge, with a truck carrying a load of wood in the background. The car is traveling in the <u>middle</u> lane, and it appears to be moving in the same direction as the truck.

Q: Are there any potential dangers in the scenario?

A: The ego-vehicle should continue **driving through the intersection**, following the traffic light's instructions. It is important to **be cautious and attentive to the pedestrians to ensure safety for all involved.**

Time-Aware Token Selection

- Utilize text prompts as guidance to select tokens wisely. -
- Alignment among text, timestamps, and videos. -

Examples of Selection

and 'C turns on the cooker with her right hand'?

C holds the handle of the frying pan to

the cooker with her left hand C operates the cooker C puts the cooking oil in the pan

GT: C moves the cover of a pot Ours: C operates the cooker

Experiments

- Performing tasks for embodied understanding.

Teelse	Eine tune Deteest		Capa	Statistics				
Tasks	Fine-tune Dataset	Description	Localization	Memorization	Forecasting	S(m) / R(m)	T (s) / F	#
Surrounding Narration Traffic Sign Inquiry Action & Decision Box Detection Tracking Box Prediction	nuScenes [7]	√ √ √	√ √ √	√ √	√ √	30 / 5 30 / 1 30 / 5 50 / 1 50 / 1 50 / 1	0.5 / 1 3.5 / 7 3.5 / 7 0.5 / 1 3.5 / 7 3.5 / 7	142K 20K 301K 232K 131K 133K
Egocentric Narration Moment Recap Event Query Activity Prediction	Ego4D [25]			\checkmark	\checkmark	20 / 3 20 / 3 20 / 3 20 / 3	3 / 1 60 / 20 60 / 20 60 / 20	357K 70K 70K 69K

Box Predictio

Q: Determine the 3D location in the scene of the 2D pixel at <c, 865.3,

Q: What is the status of the cars that are to the front of the ego car? BLIP2-T5: Three cars are parked. Ours: Many cars are parked and one is moving. GT: Many cars are parked and many are moving.

Q: Has the ego vehicle seen any traffic sign before? BLIP2-T5: There is no traffic sign in the scene. Ours: The ego vehicle has seen 1 go_straight, and 1 turn_right before. GT: The ego vehicle has seen 1 go_straight, and 1 turn_right before.

505.9> 3 seconds later?

BLIP2-T5: Location: [1.18, 29.96, 1.56], Car

GT: Location: [-0,12, 38,45, 0.05], Pedestrian

Ours: Location: [0, 38, 0], Pedestrian

Benchmark

Q: Provide the 3D location of the **2D point <c**, **856, 481>** in the image. BLIP2-T5: Location: [2.20, 8.85, -0.03], Car

Ours: Location: [3, 12, 0], Car GT: Location: [3.38, 13.56, 0.003], Car

Q: What actions taken by the ego vehicle can lead to a collision with <c, 817.5, 668.3> BLIP2-T5: Sharp left turn. Ours: Accelerate and go straight.

GT: Accelerate and go straight.

C: "What happened 12.1 seconds before? BLIP2-T5: C stirs the meat in the frying pan Ours: C moves the meat from the frypan to the plate GT: C moves the meat from the frypan to the plate

End-to-end Planning

Q: What are the 3D spatial coordinates of the pixel at <c, 1001.1, 544.6> 2.0 seconds ago? BLIP2-T5: Location: [-2.31, 19.62, -1.21], Barrier Ours: Location: [-1, 15, 0], Pedestrian GT: [-0.35, 15.32, -0.01], Pedestrian

Benchmark

Q: What is the object **to the front of** the ego car? BLIP2-T5: One bicycle is parked. Ours: One bicycle is without a rider. GT: One bicycle is without a rider.

Q: Has the ego vehicle seen any **traffic sign** before? BLIP2-T5: Yes. The ego vehicle has seen 1 turn_right before. Ours: Yes. The ego vehicle has seen 1 turn_left before. GT: Yes. The ego vehicle has seen 1 turn_left before.

Q: Find the 3D position in the scene of the 2D pixel at <c, 737.3, 472.7>. BLIP2-T5: Location: [-0.2, 25.2, 1.3], truck Ours: Location: [-2, 32, 1], bus GT: Location: [-2.16, 34.06, 0.77], bus

Q: What is the future state of <c3,826.7,521.7>? BLIP2-T5: Still. Ours: Moving forward. GT: Moving forward.

Q: Find the 3D world position of the 2D point **<c, 626.9, 558.3>** in the image, 1.5 seconds ago.

BLIP2-T5: Location: [-0.87, 9.2, -0.3], Car Ours: Location: [-1, 11, 0], Car GT: Location: [-1.03, 11.17, -0.52], Car

Q: Calculate the 3D world location of the pixel with 2D coordinates <c, 734.5 , 673.2>. 1.0 seconds later. BLIP2-T5: Location: [-0.2, 4.15, -1.3], Car Ours: Location: [0, 8, 0], Car GT: [-0.05, 8.00, -0.75], Car

t - 37.8s

Q: "What happened 37.8 seconds before? BLIP2-T5: C pens the fridge Ours: C puts the water in the fridge GT: C puts the water in the fridge

Benchmark

Q What happened between 'C opens the water bottle' and 'C closes water bottle'?

BLIP2-T5: C pours water from the water bottle Ours: C drinks water GT: C drinks water

'C picks up the drill'

'C puts the power drill on the wood'

Q: What happened between 'C picks up the drill' and 'C puts the power drill on the wood'?

BLIP2-T5: C picks the wood Ours: C drills the wood GT: C drills the wood

Q: Give a caption.

Ours: C cuts black wire

GT: C cuts black wire

BLIP2-T5: C moves the wires

Q: Give a caption. BLIP2-T5: C drops the sieve in the sink Ours: C pours the potatoes in the plate GT: C pours the potatoes into the sieve.

Q: What will happen in the next 0.7 seconds in the future? BLIP2-T5: C drops the knife on the cutting board Ours: C puts the slices of cabbage in the sieve GT: Cputs the slices of cabbage in the sieve with her left hand

t + 1.2s

Q: What will happen in the next **1.2 seconds in the future**? BLIP2-T5: C drops the knife on the cutting board Ours: C cuts the onion with the knife GT: C cuts the onion with the knife

- •	
Experi	ments
слрен	

- 1	

Mathada	Tracking		Box Detection		Box Prediction		Traffic Sign Inquiry			Surrounding Narration			Action & Decision		
Methods	Pr@1	Pr@2	Pr@1	Pr@2	Pr@1	Pr@2	С	R	В	С	R	В	С	R	В
BLIP2-opt [27]	0.1	0.1	0.1	0.2	0.2	0.5	23.0	26.9	20.5	8.1	19.7	21.2	8.4	11.5	11.1
BLIP2-flant5 [27]	3.0	6.0	5.1	10.5	3.6	6.3	63.1	39.4	31.4	65.2	64.9	27.9	68.7	71.4	43.1
LLaMA-Ada. [17]	6.1	10.5	8.3	14.9	7.5	12.5	<u>68.3</u>	66.6	<u>61.6</u>	<u>67.0</u>	<u>77.5</u>	60.1	<u>72.3</u>	76.8	64.7
LLaVA [32]	5.5	9.3	28.5	31.2	6.1	10.2	51.1	58.5	50.8	64.9	64.6	<u>41.2</u>	64.4	62.4	<u>57.9</u>
Otter [26]	10.0	17.2	<u>41.8</u>	<u>46.9</u>	<u>8.9</u>	<u>15.8</u>	62.8	41.1	32.4	60.0	64.2	13.3	69.2	73.2	53.0
VideoChat [28]	0.4	0.9	0.1	0.3	0.1	0.2	25.3	21.9	11.7	21.7	29.2	12.2	29.6	33.2	13.1
Vid-ChatGPT [36]	0.1	0.6	0.1	1.0	0.3	1.2	49.6	57.1	48.6	61.0	69.6	37.2	53.6	58.5	43.5
ELM (Ours)	14.0	23.3	51.6	56.9	15.1	24.4	76.5	71.2	63.9	73.2	78.7	29.8	74.4	83.3	41.2

OOD Evaluation

Method	$ $ ADE \downarrow	FDE↓	$Time(s)\downarrow$
Command Mean UniAD-single [34] Flamingo [3]	$ \begin{array}{ c c c } 7.98 \\ 4.16 \\ 2.78 \\ \end{array} $	$11.41 \\ 9.31 \\ 5.31$	- 0.56 1.47
ELM	2.28	4.27	1.61

(a) nuScenes. We outperform the best previous methods on most metrics across the six tasks on nuScenes which validates the generality of our model.

Mathada	Moment Recap		Event Query			Egocentric Narration			Activity Prediction			Mathada	# naram	
Methous	C	R	В	C	R	В	C	R	В	C	R	В	Wiethous	# param
BLIP2-opt [27]	1.2	8.9	6.8	7.8	28.4	14.7	5.2	19.8	10.7	2.7	18.7	9.6	BLIP2-opt	2.7B
BLIP2-flant5 [27]	13.1	31.9	12.5	27.3	33.0	16.6	16.9	33.5	15.4	11.5	31.2	11.3	BLIP2-flant5	2.7B
LLaMA-Ada. [17]	11.2	30.2	12.3	37.5	47.2	28.1	18.4	34.2	15.3	13.1	31.2	12.8	LLaMA-Ada.	7B
LLaVA [32]	9.6	28.3	12.1	39.8	44.6	29.9	6.5	28.2	11.6	8.4	28.0	13.0	LLaVA	7B
Otter [26]	11.4	29.6	10.5	27.1	38.3	19.1	14.1	31.4	13.9	11.1	29.4	10.3	Otter	7B
VideoChat [28]	13.2	32.5	13.8	34.5	42.2	26.4	20.7	35.0	17.6	12.1	32.4	14.1	VideoChat	7B
Vid-ChatGPT [36]	10.0	31.1	13.3	27.9	36.5	20.9	10.2	21.7	10.4	9.4	30.5	12.6	Vid-ChatGPT	7B
ELM (Ours)	22.6	36.7	19.4	<u>38.0</u>	43.1	<u>27.6</u>	26.5	37.7	<u>16.9</u>	18.1	34.1	17.0	ELM (Ours)	2.7B

(b) Ego4D. We extended the model to Ego4D dataset and verified the generality of our token bank module on four tasks. (c) Adopted LLM params.

Q: What is the unusual about the driving scene?

A: The scene shows a busy city street with a construction site on the side of the road. There is a traffic light visible in the background. The unusual element in this scene is the presence of a construction site, which may cause traffic disruptions or delays.

Barrier@1.0

BEVFormer

A: Still.

- DETR3D

- VCD

--- ELM

0.8

1.0

1.0 -

0.8

0.2

0.0

0.0

0.2

0.4

Recall

0.6

Q: What is the movement of object <c1,185.0,609.2>?

A: Turn left, decelerate gradually without braking.

Q: In what trajectory will the ego-car move in the future? A: [0, 3], [-1, 6], [-2, 8], [-3, 11], [-4, 14], [-5, 16]

Q: What actions can lead to a collision with <c3, 850.1, 645.2>?

Q: Given this scenario, what safe steps should the ego vehicle take?

vehicle turns left at a constant speed?

A: Accelerate and go straight.

Limitations

Driving-specific Inputs

ELM cannot handle common setting such as LiDAR or multi-view images as input, limiting its information source.

Closed-loop Planning

ELM is evaluated under an open-loop scheme, while closed-loop planning is necessary to see if it can handle corner cases.

Efficiency Constraints

Inheriting the drawbacks of LLMs, ELM suffers from long inference time, which may impact practical implementation.

One-page Takeaway

- End-to-end Autonomous Driving
 - Challenge: Generalization & Explainability
 - Recent trend: use vision language model to **embed "world knowledge"** to solve the challenges.
- ELM: Embodied Understanding of Driving Scenarios
 - Revive driving scene understanding by delving into **embodied** settings, along with capacities, tasks, and rubrics.
 - Expand vanilla VLMs to process long horizon space and time (open-world data & module design).

