

Milano, Italy

Byung-Kwan Lee, Beom Chan Park, Chae Won Kim, Yong Man Ro

Scene Perception: Detecting and Judging Objects Undergoing Relational Violations

IRVING BIEDERMAN, ROBERT J. MEZZANOTTE, AND JAN C. RABINOWITZ State University of New York at Buffalo

Scene Perception in the Human Brain

Russell A. Epstein¹ and Chris I. Baker²

¹Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; email: epstein@psych.upenn.edu

²Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892, USA; email: bakerchris@mail.nih.gov

Dense and Aligned Captions (DAC) Promote Compositional Reasoning in VL Models

Sivan Doveh ^{1,2}	Assaf Art	oelle ¹ Sivar	n Harary 1	Roei Herzig ^{1,3}	Donghyun Kim ⁴
Paola Cascante-	bonilla ⁴	Amit Alfas	sy ^{1,5} R	ameswar Panda 4	Raja Giryes ³
Rogerio I	Feris ⁴	Shimon	Ullman ²	Leonid K	Carlinsky ⁴

From Cognitive Science to Machine Learning,

Real-world scene understanding

- Recognizing object presences
- Determining their positions
- Identifying their states
- Understanding their relationships
- Extracting spatial scene layouts
- Grasping non-object notions

 $^1{\rm IBM}$ Research, $^2{\rm Weizmann}$ Institute of Science, $^3{\rm Tel-Aviv}$ University, $^4{\rm MIT-IBM}$ Watson AI Lab, $^5{\rm Technion}$

Real-world scene understanding

- Recognizing object presences
- Determining their positions
- Identifying their states
- Understanding their relationships
- Extracting spatial scene layouts
- Grasping non-object notions

From Rich CV Models

- Segmentation/Detection
- Segmentation/Detection
- Scene Graph Generation

OCR

Segmentation/Detection/Scene Graph Generation

External CV Models

- Panoptic Segmentation (Mask2Former, CVPR 2022, Meta)
- Open-World Object Detection (OWLv2, NeurIPS 2023, Google)
- Scene Graph Generation (Panoptic SGG, ECCV 2022, Nanyang Tech)
- OCR (PaddleOCRv2, performant open-source OCR)

Swin-B/4 106M

CLIP-B/16 154M (We use ADE20K-847+ImageNet)

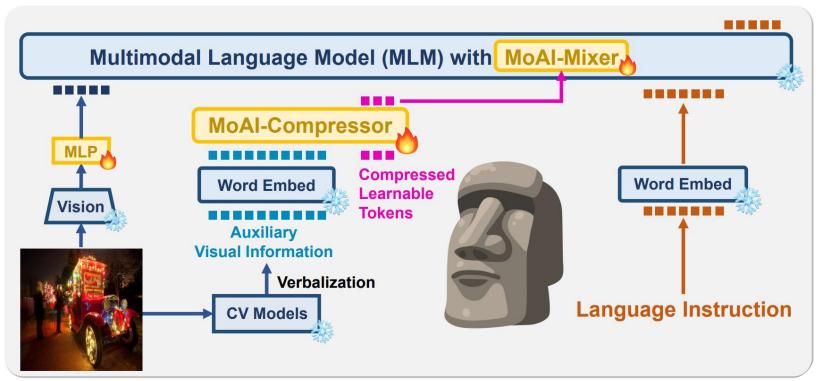
ResNet-50 44M

14M (Chinese & Englinsh, Rotated Text O)

What do we propose?

Compressor: Compressing Auxiliary Visual Information from external CV models

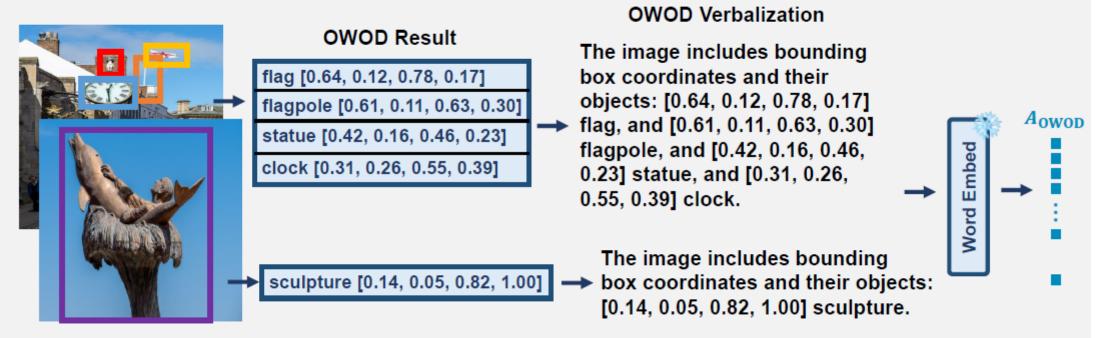
Mixer: Blending Aux with Visual and Language Features in Multimoal LM (MLM)

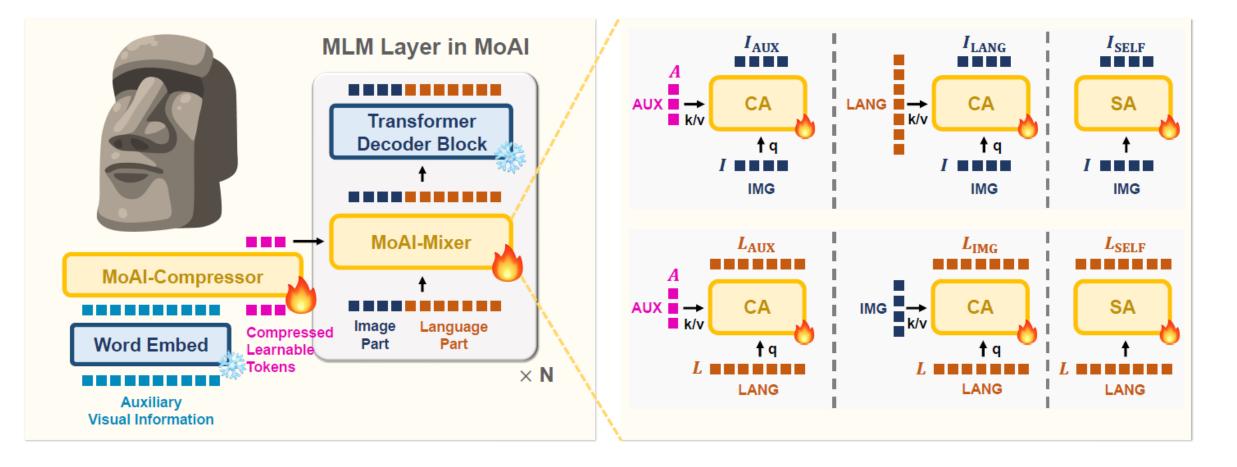


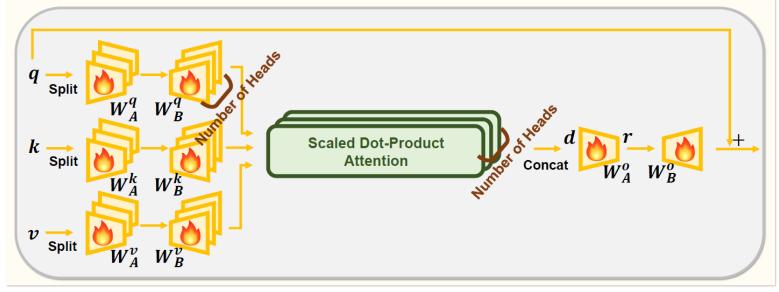
3

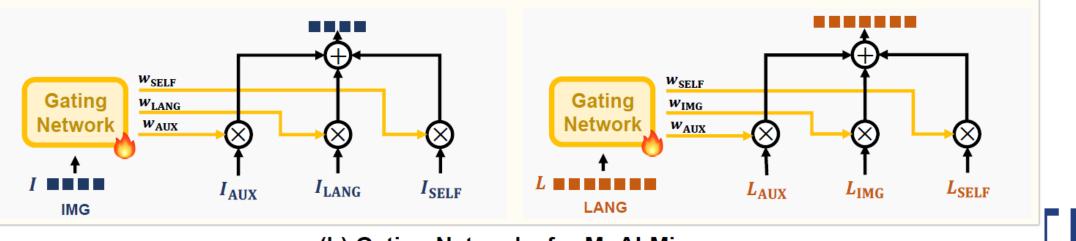
MoAI: Mixture of All Intelligence

for Large Language and Vision Model



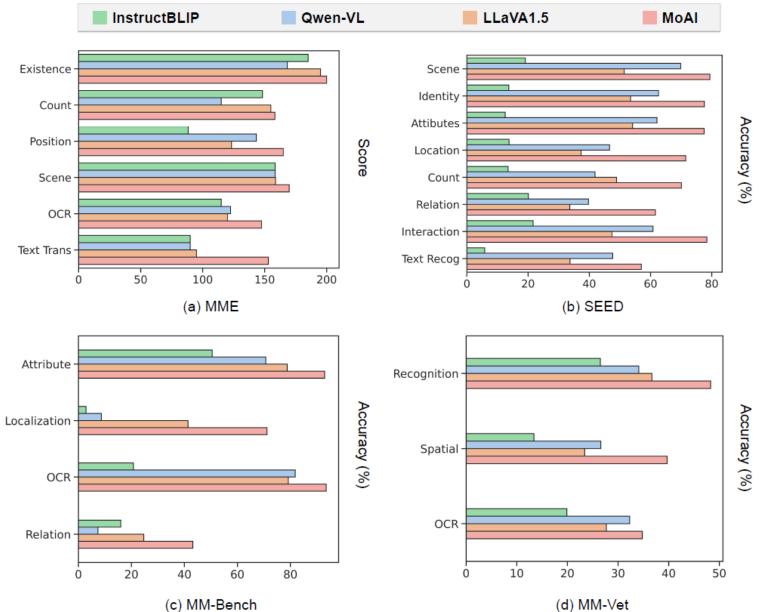

Open-World Object Detection (OWOD)




KAIST ELECTRICAL ENGINEERING

(a) CA/SA with Low Rank Adaptation (LoRA) for Expert Modules

(b) Gating Networks for MoAI-Mixer


RAIST ELECTRICAL ENGINEERING

KAIST ELECTRICAL ENGINEERING

K

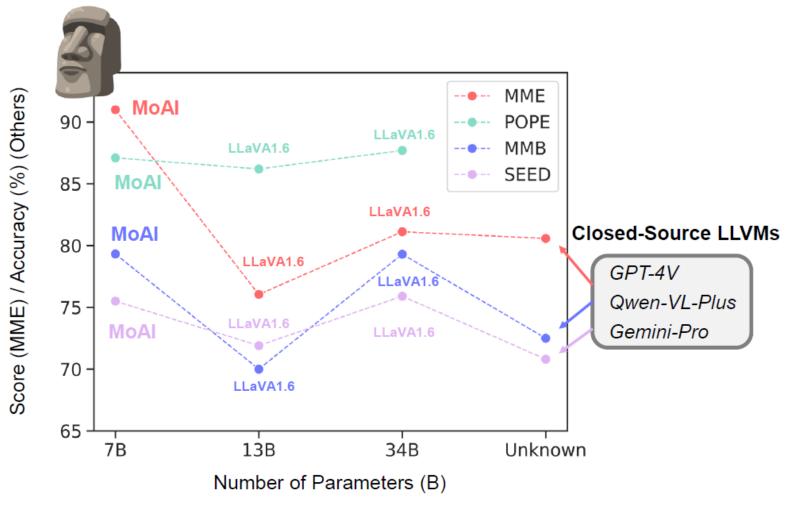
Experiments

VLMs	Q-Bench	SQA-IMG	TextVQA	POPE	MME-P	MME-C	MM-Bench	MMB-CN	MM-Vet
BLIP2-13B [42]	-	61.0	42.5	85.3	1294	290	-	-	22.4
InstructBLIP-7B [16]	56.7	60.5	50.1	-	-	-	36.0	23.7	26.2
InstructBLIP-13B [16]	-	63.1	50.7	78.9	1213	-	-	-	25.6
Shikra-13B [9]	54.7	-	-	-	-	-	58.8	-	-
IDEFICS-9B [38]	-	-	25.9	-	-	-	48.2	25.2	-
IDEFICS-80B [38]	-	-	30.9	-	-	-	54.5	38.1	-
Qwen-VL-7B $[4]$	59.4	67.1	63.8	-	-	-	38.2	7.4	-
Qwen-VL-Chat-7B $[4]$	-	68.2	61.5	-	1488	361	60.6	56.7	-
MiniGPT-4-7B [83]	-	-	-	-	582	-	23.0	-	22.1
Otter-7B $[40]$	47.2	-	-	-	1292	-	48.3	-	24.6
LLaVA-7B $[50]$	-	38.5	-	-	807	248	34.1	14.1	26.7
MiniGPT-v2-7B [8]	-	-	-	-	-	-	-	-	-
MiniGPT-v2-Chat-7B [8]	-	-	-	-	-	-	-	-	-
LLaVA1.5-7B [48]	58.7	66.8	58.2	85.9	1511	294	64.3	58.3	30.5
LLaVA1.5-13B [48]	62.1	71.6	61.3	85.9	1531	295	67.7	63.6	35.4
mPLUG-Owl-7B [75]	58.9	-	-	-	967	-	46.6	-	-
mPLUG-Owl2-7B [76]	62.9	68.7	58.2		1450	-	64.5	-	36.2
ShareGPT4V-7B $[10]$	63.4	68.4	-		1567	376	68.8	62.2	37.6
CogVLM-17B [71]	-	68.7	58.2		-	-	65.8	55.9	54.5
LLaVA-XTuner-20B $[15]$	-	-	-	-	-	-	75.1	73.7	37.2
Intern-XC-7B [78]	64.4	-	-		1528	391	74.4	72.4	35.2
MoAI-7B	70.2	83.5	67.8	87.1	1714	561	79.3	76.5	43.7

Table 2: Illustrating the effectiveness of external computer vision (CV) models compared by the perception scores in MME [25] and MM-Bench [51]. 'TT' denotes text translation task that requires OCR as a priority.

			MME					MM-Bench					
PS+OWOD	SGG	OCR	Existence	Position	Scene	OCR	ΤT	Recognition	Localization	Spatial	OCR		
×	1	1	187	154	161	145	138	77.6	54.0	32.6	84.6		
✓	×	1	198	145	164	147	150	89.7	65.3	35.8	90.9		
✓	✓	×	199	163	166	120	95	91.8	69.2	42.8	80.1		
1	1	1	200	165	170	148	153	92.9	71.1	43.2	93.5		

Table 3: Ablation study for training step choice, selecting top-k expert modules in MoAI-Mixer, and the type of weights for gating network.


(a) Training step choice (b) Selecting Top-k Experts (c) Gating network weights

Step	MME-P	MME-C	k	MME-P	MME-C	Gating	MME-P	MME-C
First	1542	369	1	1588	387	Random	1520	348
Second	1654	511	2	1638	451	Uniform	1617	485
Combined	1714	561	3	1714	561	Trained	1714	561

(a) MME/POPE/MMB/SEED by Scale

Discussion and Limitation

Discussion and Limitation. From the results, we can gain insight that prioritizing perception capabilities is more crucial than relying on extra curation of visual instruction datasets or scaling up model size. As illustrated in Fig. 7(a), MoAI-7B surpasses the zero-shot performances despite being relatively small compared to the considerably larger open-source and closed-source models. Notably, Fig. 7(b) also indicates that MoAI performs well even in hallucination zero-shot datasets: POPE [44] and HallusionBench [47]. This suggests that recognizing objects and their relationships accurately can help prevent LLVMs from doing mistakes. Looking ahead, as MoAI is tailored for real-world scene understanding, we will incorporate more external CV models to provide LLVMs with diverse capabilities for low-level vision understanding, common-sense knowledge, non-object notions beyond text descriptions such as charts, diagrams, signs, and symbols, and solving advanced math problems.

