



# Unlocking Attributes' Contribution to Successful Camouflage: A Combined Textual and Visual Analysis Strategy

Hong Zhang, Yixuan Lyu, Qian Yu, Hanyang Liu, Huimin Ma, Yuan Ding, Yifan Yang\*



The image displays a creature resembling algae, integrating seamlessly with the marine environment, exhibiting an intricate structure of appendages, positioned against a blurry ocean floor background.





The image shows a crab camouflaged against a sandy background. Its color and texture blend with the surrounding sand, making it difficult to distinguish.



Repo: https://github.com/lyu-yx/ACUMEN Paper: https://arxiv.org/abs/2408.12086

# 1. Introduction

## 1.1 Problem Statement

General detection/segmentation algorithms presented slowing of performance lift.

Main reason: have troubles when object feature become less representative or camouflaged by themselves.





# 1. Introduction

## 1.2 Related Works

- Approaches based on hand-crafted features and deep learning methods have achieved astonishing performance in **visual modalities**.
- However, the combined use of **textual and visual modalities** to **enhance performance and understanding of camouflage patterns** has not yet been explored.

## 1.3 Our Solution

• We commence by **collecting a dataset** enriched with image descriptions and attribute contributions. Subsequently, we construct a **bifurcated multimodal framework** that merges textual and visual analyses seamlessly.

# 2. Motivation

- 1. From cognitive science point of view, merging **textual and visual** information synergistically boosts cognitive understanding[1-2].
- 2. Evolutionary biology highlights the significance of camouflage pattern creation (by prey) and its identification (by predators) in evolutionary progress, underlining the necessity to analyze camouflage from both **granular attribute insights (designing)** and a wider **object detection (breaking)** standpoint.



- Environmental Pattern Matching;
- Color Matching;
- Shading.



- Shape Mimicry;
- Environmental Textures;
- Color Matching.

Mayer, R.E.: Multimedia learning. In: Psychology of learning and motivation, vol. 41, pp. 85–139 (2002)
 Paivio, A.: Imagery and verbal processes. Psychology Press (2013)

# 3. COD-TAX Dataset





The image displays a creature resembling algae, integrating seamlessly with the marine environment, exhibiting an intricate structure of appendages, positioned against a blurry ocean floor background.



Surrounding Factors (5 sub attr), Camouflaged Object-Self Reasons (6 sub attr), and Imaging Quality Reasons (6 sub attr). 17 attributes in total.



- The range of maximum values extends from 0.21 to 0.55.
- The average values fluctuate between 0.004 and 0.21.
- Average description length of 26.52 words.

All the descriptions and attributions are generated by GPT-4V first and finetuned by more than 30 volunteers.

## 4. Network Overall



ACUMAN presented a dual-branch architecture, consisting of a textual branch (in green) and a visual branch (in cyan).

During the inference, **the textual branch is omitted** to eliminate dependency on LVLMs like GPT4, thereby making the inference process solely reliant on visual cues.

# 5. **Results**

|                                                                                                                                                                  | 5 5                                                                                                                              | 5                                                                                                                                                                                                                                                    | <b>\$</b> -                                                                                                | <b>\$</b> .                                                                                               |                                                                                                                                                                      | atoto                                                                            | 5                                                                                                      | 5                                                                                                                       | 5                                                                                                                           | Š 🕺                                                                                                                      |                                                                                                                                   |                                                                                                             | \$                                                                                                      | ş                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                                                                                                  | Ť                                                                                                                                |                                                                                                                                                                                                                                                      | 5                                                                                                          |                                                                                                           | 5                                                                                                                                                                    |                                                                                  |                                                                                                        | <b>H</b>                                                                                                                |                                                                                                                             | Ť                                                                                                                        |                                                                                                                                   | Ķ                                                                                                           | ,                                                                                                       | Ý                                                                            |
|                                                                                                                                                                  |                                                                                                                                  | Jel                                                                                                                                                                                                                                                  |                                                                                                            | X                                                                                                         |                                                                                                                                                                      | X                                                                                |                                                                                                        | S.                                                                                                                      | 14                                                                                                                          | Ľ                                                                                                                        | J.                                                                                                                                | N.                                                                                                          | -J.C                                                                                                    | Z                                                                            |
|                                                                                                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                      | 7                                                                                                          |                                                                                                           |                                                                                                                                                                      |                                                                                  |                                                                                                        |                                                                                                                         |                                                                                                                             | 2                                                                                                                        |                                                                                                                                   |                                                                                                             |                                                                                                         |                                                                              |
|                                                                                                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                                                                                      |                                                                                  |                                                                                                        |                                                                                                                         |                                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                             |                                                                                                         |                                                                              |
| Input                                                                                                                                                            | GT                                                                                                                               | Ours                                                                                                                                                                                                                                                 | ;                                                                                                          | MRR                                                                                                       | ]                                                                                                                                                                    | FSPNet                                                                           |                                                                                                        | PopNet                                                                                                                  | Ex                                                                                                                          | plicit                                                                                                                   | FE                                                                                                                                | DER                                                                                                         | FPN                                                                                                     | Net                                                                          |
| Input                                                                                                                                                            | GT                                                                                                                               | Ours                                                                                                                                                                                                                                                 |                                                                                                            | MRR                                                                                                       | ]<br>мо                                                                                                                                                              | FSPNet                                                                           |                                                                                                        | PopNet                                                                                                                  | Ех                                                                                                                          | plicit                                                                                                                   | FE                                                                                                                                | DER                                                                                                         | FPN                                                                                                     | Net                                                                          |
| Input<br>Methods                                                                                                                                                 | GT                                                                                                                               | Ours                                                                                                                                                                                                                                                 | $S_{\alpha} \uparrow$                                                                                      | $\frac{MRR}{CA}$                                                                                          | $\frac{MO}{F^{\omega}_{\beta}}\uparrow$                                                                                                                              | FSPNet<br>M↓                                                                     | $S_{\alpha} \uparrow$                                                                                  | $\frac{\text{COI}}{E_{\phi}} \uparrow$                                                                                  | Explock<br>$F^{\omega}_{\beta} \uparrow$                                                                                    | M ↓                                                                                                                      | FE                                                                                                                                | $\frac{\text{DER}}{E_{\phi}}$                                                                               | $FPN$ $\frac{24K}{F_{\beta}^{\omega}} \uparrow$                                                         | Net<br>M↓                                                                    |
| Input<br>Methods<br>PopNet [47]                                                                                                                                  | GT<br>Publication<br>ICCV2023                                                                                                    | Ours<br>Size                                                                                                                                                                                                                                         | $S_{\alpha}$ $\uparrow$ 0.806                                                                              | $\frac{MRR}{E_{\phi}\uparrow}$ 0.859*                                                                     | $\frac{MO}{F_{\beta}^{\omega}\uparrow}$ 0.744*                                                                                                                       | M ↓                                                                              | $S_{\alpha} \uparrow$<br>0.827                                                                         | PopNet<br>$COI$ $E_{\phi} \uparrow$ $0.910^*$                                                                           | $E_{\beta}$                                                                                                                 | <i>M</i> ↓ 0.031                                                                                                         | $FE$ $S_{\alpha} \uparrow$ 0.852                                                                                                  | $\frac{\text{DER}}{E_{\phi} \uparrow}$ 0.909*                                                               | $FPN$ $C4K$ $F^{\omega}_{\beta} \uparrow$ $0.802^{*}$                                                   | <i>M</i> ↓ 0.043                                                             |
| Input<br>Methods<br>PopNet [47]<br>CFANet [52]                                                                                                                   | GT<br>Publication<br>ICCV2023<br>ICME2023                                                                                        | Ours<br>512 <sup>2</sup><br>416 <sup>2</sup>                                                                                                                                                                                                         | $S_{\alpha} \uparrow$ 0.806 0.815                                                                          | $\begin{array}{c} \text{MRR} \\ \hline \\ CA \\ E_{\phi} \uparrow \\ 0.859^{*} \\ 0.876 \end{array}$      | $\frac{\text{MO}}{F_{\beta}^{\omega}}\uparrow$ $0.744^{*}$ $0.761$                                                                                                   | FSPNet         M ↓         0.073         0.073                                   | $S_{\alpha} \uparrow$<br>0.827<br>0.834                                                                | PopNet<br>$COT$ $E_{\phi} \uparrow$ $0.910^{*}$ $0.905$                                                                 | $Ex$ $\frac{D10K}{F_{\beta}^{\omega}} \uparrow$ $0.757^{*}$ $0.730$                                                         | <i>M</i> ↓<br>0.031<br>0.031                                                                                             | $FE$ $S_{\alpha} \uparrow$ $0.852$ $0.848$                                                                                        | EDER<br>$E_{\phi} \uparrow$<br>$0.909^*$<br>0.906                                                           | $FPN$ $\frac{C4K}{F_{\beta}^{\omega}} \uparrow$ $0.802^{*}$ $0.791$                                     | M ↓<br>0.043<br>0.046                                                        |
| Input<br>Methods<br>PopNet [47]<br>CFANet [52]<br>MFFN [54]                                                                                                      | GT<br>Publication<br>ICCV2023<br>ICME2023<br>WACV2023                                                                            | Ours<br>512 <sup>2</sup><br>416 <sup>2</sup><br>384 <sup>2</sup>                                                                                                                                                                                     | $S_{\alpha} \uparrow$ 0.806 0.815 †                                                                        | $\begin{array}{c} \text{MRR} \\ \hline \\ E_{\phi} \uparrow \\ 0.859^{*} \\ 0.876 \\ \dagger \end{array}$ | $\frac{\text{MO}}{F_{\beta}^{\omega} \uparrow}$ $0.744^{*}$ $0.761$ $\dagger$                                                                                        | M ↓<br>0.073<br>0.073<br>†                                                       | $S_{\alpha} \uparrow$<br>0.827<br>0.834<br>0.846                                                       | PopNet<br>COI<br>$E_{\phi} \uparrow$<br>0.910*<br>0.905<br>0.897*                                                       | Exp<br>$F_{\beta}^{\omega}$ $\uparrow$<br>0.757*<br>0.730<br>0.745                                                          | M ↓<br>0.031<br>0.028                                                                                                    | Ff<br>$S_{\alpha} \uparrow$<br>0.852<br>0.848<br>0.856                                                                            | <b>EDER</b><br>$E_{\phi} \uparrow$<br>0.909*<br>0.906<br>0.902*                                             | FPN<br>$F_{\beta}^{\omega} \uparrow$<br>0.802*<br>0.791<br>0.791                                        | M ↓<br>0.043<br>0.046<br>0.042                                               |
| Input<br>Methods<br>PopNet [47]<br>CFANet [52]<br>MFFN [54]<br>FEDER [12]                                                                                        | GT<br>Publication<br>ICCV2023<br>ICME2023<br>WACV2023<br>CVPR2023                                                                | Ours<br>512 <sup>2</sup><br>416 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup>                                                                                                                                                                 | $S_{\alpha} \uparrow$<br>0.806<br>0.815<br>†<br>0.807                                                      | MRR<br>CA<br>$E_{\phi} \uparrow$<br>0.859*<br>0.876<br>$\dagger$<br>0.873                                 | $\frac{MO}{F_{\beta}^{\omega}\uparrow}$ 0.744* 0.761 † 0.738*                                                                                                        | M ↓<br>0.073<br>0.073<br>†<br>0.069                                              | $S_{\alpha} \uparrow$<br>0.827<br>0.834<br>0.846<br>0.823                                              | PopNet<br>$E_{\phi} \uparrow$<br>0.910*<br>0.897*<br>0.900                                                              | Ex<br>$F_{\beta}^{\omega}$ $\uparrow$<br>0.757*<br>0.730<br>0.745<br>0.716*                                                 | M ↓<br>0.031<br>0.028<br>0.032                                                                                           | Ff<br>$S_{\alpha} \uparrow$<br>0.852<br>0.848<br>0.856<br>0.846                                                                   | <b>EDER</b><br>$E_{\phi} \uparrow$<br>0.909*<br>0.906<br>0.902*<br>0.905                                    | FPN<br>$F_{\beta}^{\omega} \uparrow$<br>0.802*<br>0.791<br>0.791<br>0.789*                              | M ↓<br>0.043<br>0.046<br>0.042<br>0.045                                      |
| Input<br>Methods<br>PopNet [47]<br>CFANet [52]<br>MFFN [54]<br>FEDER [12]<br>Explicit [26]                                                                       | GT<br>Publication<br>ICCV2023<br>ICME2023<br>WACV2023<br>CVPR2023<br>CVPR2023                                                    | Ours<br>512 <sup>2</sup><br>416 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>352 <sup>2</sup>                                                                                                                                             | $S_{\alpha} \uparrow$<br>0.806<br>0.815<br>$\dagger$<br>0.807<br>0.846                                     | MRR<br>$E_{\phi} \uparrow$<br>0.859*<br>0.876<br>†<br>0.873<br>0.895                                      | $\begin{array}{c} \text{MO} \\ \hline F_{\beta}^{\omega} \uparrow \\ 0.744^{*} \\ 0.761 \\ \dagger \\ 0.738^{*} \\ 0.777 \end{array}$                                | M ↓<br>0.073<br>0.073<br>†<br>0.069<br>0.059                                     | $S_{\alpha} \uparrow$<br>0.827<br>0.834<br>0.846<br>0.823<br>0.843                                     | PopNet<br>COI<br>$E_{\phi} \uparrow$<br>0.910*<br>0.905<br>0.897*<br>0.900<br>0.907                                     | Ex<br>$F_{\beta}^{\omega}$ $\uparrow$<br>0.757*<br>0.730<br>0.745<br>0.716*<br>0.742                                        | M↓           0.031           0.031           0.032           0.032                                                       | Ff<br>$S_{\alpha} \uparrow$<br>0.852<br>0.848<br>0.856<br>0.846<br>†                                                              | EDER<br>$E_{\phi} \uparrow$<br>0.909*<br>0.906<br>0.902*<br>0.905<br>†                                      | FPN<br>$F_{\beta}^{\omega} \uparrow$<br>0.802*<br>0.791<br>0.791<br>0.789*<br>†                         | M ↓<br>0.043<br>0.046<br>0.042<br>0.045<br>†                                 |
| Input<br>Methods<br>PopNet [47]<br>CFANet [52]<br>MFFN [54]<br>FEDER [12]<br>Explicit [26]<br>FSPNet [18]                                                        | GT<br>Publication<br>ICCV2023<br>ICME2023<br>WACV2023<br>CVPR2023<br>CVPR2023<br>CVPR2023                                        | Ours<br>512 <sup>2</sup><br>416 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>352 <sup>2</sup><br>384 <sup>2</sup>                                                                                                                         | $S_{\alpha} \uparrow$<br>0.806<br>0.815<br>$\uparrow$<br>0.807<br>0.846<br>0.856                           | MRR<br>$E_{\phi} \uparrow$<br>0.859*<br>0.876<br>$\dagger$<br>0.873<br>0.895<br>0.899                     | $\begin{array}{c} \text{MO} \\ \hline F_{\beta}^{\omega} \uparrow \\ 0.744^{*} \\ 0.761 \\ \dagger \\ 0.738^{*} \\ 0.777 \\ 0.799 \end{array}$                       | M ↓<br>0.073<br>0.073<br>†<br>0.069<br>0.059<br>0.050                            | $S_{\alpha} \uparrow$<br>0.827<br>0.834<br>0.846<br>0.823<br>0.843<br>0.843                            | PopNet<br>$E_{\phi} \uparrow$<br>0.910*<br>0.905<br>0.897*<br>0.900<br>0.907<br>0.895                                   | Ex<br>$F_{\beta}^{\omega}$ $\uparrow$<br>0.757*<br>0.730<br>0.745<br>0.716*<br>0.742<br>0.735                               | multiplicit           M↓           0.031           0.031           0.028           0.032           0.029           0.026 | Ff<br>$S_{\alpha} \uparrow$<br>0.852<br>0.848<br>0.856<br>0.846<br>$\dagger$<br>0.879                                             | EDER<br>$E_{\phi} \uparrow$<br>0.909*<br>0.906<br>0.902*<br>0.905<br>†<br>0.915                             | FPN<br>$F_{\beta}^{\omega} \uparrow$<br>0.802*<br>0.791<br>0.791<br>0.789*<br>†<br>0.816                | M ↓<br>0.043<br>0.046<br>0.042<br>0.045<br>†<br>0.035                        |
| Input<br>Methods<br>PopNet [47]<br>CFANet [52]<br>MFFN [54]<br>FEDER [12]<br>Explicit [26]<br>FSPNet [18]<br>MRR-Net [49]                                        | GT<br>Publication<br>ICCV2023<br>ICME2023<br>WACV2023<br>CVPR2023<br>CVPR2023<br>CVPR2023<br>TNNLS2023                           | Ours<br>512 <sup>2</sup><br>416 <sup>2</sup><br>384 <sup>2</sup><br>352 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup>                                                                                 | $S_{\alpha} \uparrow$<br>0.806<br>0.815<br>$\uparrow$<br>0.807<br>0.846<br>0.856<br>0.826                  | MRR<br>$E_{\phi} \uparrow$<br>0.859*<br>0.876<br>$\dagger$<br>0.873<br>0.895<br>0.899<br>0.880            | $\begin{array}{r} \text{MO} \\ \hline F_{\beta}^{\omega} \uparrow \\ 0.744^{*} \\ 0.761 \\ \dagger \\ 0.738^{*} \\ 0.777 \\ 0.799 \\ 0.759^{*} \end{array}$          | M ↓<br>0.073<br>0.073<br>†<br>0.069<br>0.059<br>0.050<br>0.070                   | $S_{\alpha} \uparrow$<br>0.827<br>0.834<br>0.846<br>0.823<br>0.843<br>0.851<br>0.835                   | PopNet<br>$E_{\phi}$ ↑<br>0.910*<br>0.905<br>0.897*<br>0.900<br>0.907<br>0.895<br>0.901                                 | Ex<br>$F_{\beta}^{\omega}$ $\uparrow$<br>0.757*<br>0.730<br>0.745<br>0.716*<br>0.742<br>0.735<br>0.720*                     | M ↓<br>0.031<br>0.028<br>0.032<br>0.029<br>0.026<br>0.032                                                                | Ff<br>$S_{\alpha} \uparrow$<br>0.852<br>0.848<br>0.856<br>0.846<br>$\dagger$<br>0.846<br>$\dagger$<br>0.857                       | EDER<br>$E_{\phi} \uparrow$<br>0.909*<br>0.906<br>0.902*<br>0.905<br>†<br>0.915<br>0.906                    | FPN<br>$F\beta \uparrow$<br>0.802*<br>0.791<br>0.791<br>0.789*<br>†<br>0.816<br>0.786*                  | M↓<br>0.043<br>0.046<br>0.042<br>0.045<br>†<br>0.035<br>0.044                |
| Input<br>Methods<br>PopNet [47]<br>CFANet [52]<br>MFFN [54]<br>FEDER [12]<br>Explicit [26]<br>FSPNet [18]<br>MRR-Net [49]<br>FPNet [4]                           | GT<br>Publication<br>ICCV2023<br>ICME2023<br>WACV2023<br>CVPR2023<br>CVPR2023<br>CVPR2023<br>TNNLS2023<br>ACM MM202              | Ours<br>512 <sup>2</sup><br>416 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup><br>384 <sup>2</sup>                     | $S_{\alpha} \uparrow$<br>0.806<br>0.815<br>$\dagger$<br>0.807<br>0.846<br>0.856<br>0.826<br>0.852          | MRR<br>$E_{\phi} \uparrow$<br>0.859*<br>0.876<br>$\dagger$<br>0.873<br>0.895<br>0.899<br>0.880<br>0.905   | $\begin{array}{c} \text{MO} \\ \hline F_{\beta}^{\omega} \uparrow \\ 0.744^{*} \\ 0.761 \\ \dagger \\ 0.738^{*} \\ 0.777 \\ 0.799 \\ 0.759^{*} \\ 0.806 \end{array}$ | M ↓<br>0.073<br>0.073<br>†<br>0.069<br>0.059<br>0.050<br>0.070<br>0.056          | $S_{\alpha} \uparrow$<br>0.827<br>0.834<br>0.846<br>0.823<br>0.843<br>0.851<br>0.835<br>0.835          | PopNet<br>COI<br>$E_{\phi} \uparrow$<br>0.910*<br>0.905<br>0.897*<br>0.900<br>0.907<br>0.895<br>0.901<br>0.913          | Ex<br>$F_{\beta}^{\omega}$ $\uparrow$<br>0.757*<br>0.730<br>0.745<br>0.745<br>0.742<br>0.735<br>0.720*<br>0.748             | M ↓           0.031           0.032           0.032           0.029           0.032           0.032           0.032      | Ff<br>$S_{\alpha} \uparrow$<br>0.852<br>0.848<br>0.856<br>0.846<br>†<br>0.857<br>†                                                | EDER<br>$E_{\phi} \uparrow$<br>0.909*<br>0.906<br>0.902*<br>0.905<br>†<br>0.915<br>0.906<br>†               | FPN<br>$F_{\beta}^{\omega} \uparrow$<br>0.802*<br>0.791<br>0.791<br>0.789*<br>†<br>0.816<br>0.786*<br>† | M ↓<br>0.043<br>0.046<br>0.042<br>0.045<br>†<br>0.035<br>0.044<br>†          |
| Input<br>Methods<br>PopNet [47]<br>CFANet [52]<br>MFFN [54]<br>FEDER [12]<br>Explicit [26]<br>FSPNet [18]<br>MRR-Net [49]<br>FPNet [4]<br>LSR+ <sup>2</sup> [28] | GT<br>Publication<br>ICCV2023<br>ICME2023<br>WACV2023<br>CVPR2023<br>CVPR2023<br>CVPR2023<br>TNNLS2023<br>ACM MM203<br>TCSVT2023 | Ours<br>512 <sup>2</sup><br>416 <sup>2</sup><br>384 <sup>2</sup> | $S_{\alpha} \uparrow$<br>0.806<br>0.815<br>$\dagger$<br>0.807<br>0.846<br>0.856<br>0.826<br>0.852<br>0.854 | MRR<br>$E_{\phi} \uparrow$<br>0.859*<br>0.876<br>$\dot{1}$<br>0.895<br>0.899<br>0.880<br>0.905<br>0.924   | MO  Fωβ ↑ 0.744* 0.761 † 0.738* 0.777 0.799 0.759* 0.806 †                                                                                                           | M ↓<br>0.073<br>0.073<br>†<br>0.069<br>0.059<br>0.050<br>0.050<br>0.056<br>0.049 | $S_{\alpha} \uparrow$<br>0.827<br>0.834<br>0.846<br>0.823<br>0.843<br>0.851<br>0.835<br>0.850<br>0.847 | PopNet<br>COI<br>$E_{\phi} \uparrow$<br>0.910*<br>0.905<br>0.897*<br>0.900<br>0.907<br>0.895<br>0.901<br>0.913<br>0.924 | Ex<br>$F_{\beta}^{\circ}$ $\uparrow$<br>0.757*<br>0.730<br>0.745<br>0.745<br>0.742<br>0.735<br>0.720*<br>0.748<br>$\dagger$ | M↓       0.031       0.032       0.029       0.026       0.032       0.028                                               | Ff<br>$S_{\alpha} \uparrow$<br>0.852<br>0.848<br>0.856<br>0.846<br>$\dagger$<br>0.879<br>0.857<br>$\dagger$<br>0.857<br>$\dagger$ | EDER<br>$E_{\phi} \uparrow$<br>0.909*<br>0.906<br>0.902*<br>0.905<br>†<br>0.915<br>0.906<br>†<br>0.906<br>† | FPN<br>$F_{\beta}^{\omega}$ ↑<br>0.802*<br>0.791<br>0.791<br>0.789*<br>†<br>0.816<br>0.786*<br>†<br>†   | M ↓<br>0.043<br>0.046<br>0.042<br>0.045<br>†<br>0.035<br>0.044<br>†<br>0.036 |

# 5. Results

#### Intermediate Results:









# 5. **Results**

## Failure Cases:



# 6. Conclusion & Future Works

- Presented a study on the role of **camouflage attributes** in determining the effectiveness of camouflage patterns, alongside the introduction of the COD-TAX dataset for comprehensive analysis.
- We also introduce the **ACUMEN framework**, which uniquely integrates textual and visual data for enhancing COS performance.
- For future works, we aim to refine our investigation by **assessing the camouflage level**, introducing metrics for quantifying camouflage patterns and identifying their primary influencing factors.
- In terms of broad applicability, we are eager to investigate **additional downstream applications** pertinent to COS.

Repo: https://github.com/lyu-yx/ACUMEN Paper: https://arxiv.org/abs/2408.12086