

MILAN O

Textual Query-Driven Mask Transformer for Domain Generalized Segmentation

Byeonghyun Pak*

Byeongju Woo*

Sunghwan Kim*

Dae-hwan Kim

Hoseong Kim

https://byeonghyunpak.github.io/tqdm/

Domain Generalized Semantic Segmentation (DGSS)

- DGSS aims to build segmentation models that can generalize across unseen target domains, trained only on a single source domain.
 - *e.g.*, training on synthetic images (GTA5), testing on unseen real-world images (Cityscapes)

Our Key Observation:

- VLM's text embeddings encode domain-invariant semantic knowledge even at the pixel-level.
 - The semantic knowledge of text embeddings stems from web-scale contrastive learning objective of VLM.
 - The image-text similarity maps show strong activation in the corresponding regions across various domains.
 - : One can leverage the textual information from VLMs for domain-generalized dense predictions.

▲ Image-text similarity map of a pre-trained VLM. The text embedding of 'car' is consistently well-aligned with the corresponding class regions of images across various domains.

Motivation Domain-Invariant Semantic Knowledge in VLMs

02

▲ Our proposed method can generalize to extreme domain shift, and effectively recognize the cars in various forms that are not present in the source domain.

Motivation Domain-Invariant Semantic Knowledge in VLMs

Our Key Idea: *Textual Object Query*

02

- We propose a textual object query-based segmentation framework.
 - Utilizes the VLM's text embeddings of target classes as object queries, referred to as *textual object queries*.
 - Implementing object queries with the text embeddings results in domain-generalized mask predictions.

(b) Mask Prediction Results

Our Key Idea: Textual Object Query

- We propose a textual object query-based segmentation framework.
 - Utilizes the VLM's text embeddings of target classes as object queries, referred to as *textual object queries*.
 - Implementing object queries with the text embeddings results in domain-generalized mask predictions.
- We design a **textual query-driven mask transformer (tqdm)** based on the following principles:
 - 1. Generate the object queries that maximally encode domain-invariant semantic knowledge.
 - 2. Improve the adaptability of queries for dense predictions by enhancing semantic clarity of pixel features.

03 Textual Query-Driven Mask Transformer Overall Architecture

Step 2. Pixel Semantic Clarity Enhancement

Step 1. Textual Query Generation

- Generate initial textual object queries \mathbf{q}_t^0 from K text embeddings $\{\mathbf{t}_k\}_{k=1}^K$.
 - Each textual query encode the semantic of the corresponding class.
- The object queries should ...
 - (1) preserve domain-invariant semantics \rightarrow freeze the pre-trained text encoder of VLM.
 - (2) adapt to the segmentation task \implies employ the learnable prompt.

Step 1. Textual Query Generation

Step 2. Pixel Semantic Clarity Enhancement

- We incorporate *text-to-pixel attention* within the pixel decoder.
 - Aligns the pixel features with the corresponding textual cluster centers.
 - Enhances the pixel semantic clarity.

- ➡ Ensures that pixel features are clearly represented in terms of domain-invariant semantics.
- Allows the pixel features to be effectively grouped by textual object queries.

Step 2. Pixel Semantic Clarity Enhancement

Ablation Result on Pixel Semantic Clarity

03

m = 0: before the pixel decoder m = M: after the pixel decoder Baseline: w/o text-to-pixel attention Ours: w/ text-to-pixel attention

Step 2. Pixel Semantic Clarity Enhancement

03

m = 0: before the pixel decoder m = M: after the pixel decoder Baseline: w/o text-to-pixel attention Ours: w/ text-to-pixel attention

03

Textual Query-Driven Mask Transformer

Step 3. Query Update & Mask Prediction

Objective Loss:
$$\mathcal{L} = \mathcal{L}_{seg} + \mathcal{L}_{reg}$$

- $\mathcal{L}_{seg} = \lambda_{bce} \mathcal{L}_{bce} + \lambda_{dice} \mathcal{L}_{dice} + \lambda_{cls} \mathcal{L}_{cls}$ $\mathcal{L}_{reg} = \mathcal{L}_{reg}^{L} + \mathcal{L}_{reg}^{VL} + \mathcal{L}_{reg}^{V}$

03 Textual Query-Driven Mask Transformer Regularization Loss

- (a) \mathcal{L}_{reg}^{L} prevents the learnable prompt from distorting the semantic meaning of the text embeddings.
- (b) \mathcal{L}_{reg}^{VL} preserves joint vision-language alignment at the pixel-level.
- (c) \mathcal{L}_{reg}^{V} maintains the visual backbone's alignment with the text embeddings at the image-level.

Mathad	Dealthone	s	yntheti	c-to-ree	real-to-real			
	DackDone	$G \rightarrow C$	$G \rightarrow B$	$G \rightarrow M$	Avg.	C→B	$C \rightarrow M$	Avg.
SHADE [64]	MiT-B5	53.27	48.19	54.99	52.15	-	-	-
IBAFormer [50]	MiT-B5	56.34	49.76	58.26	54.79	-	-	-
VLTSeg [20] \otimes	ViT-B	47.50	45.70	54.30	49.17	-	-	-
tqdm (ours) 📎	ViT-B	57.50	47.66	59.76	54.97	50.54	65.74	58.14
HGFormer [10]	Swin-L	-	-	-	-	61.50	72.10	66.80
VLTSeg [20] 🗞	EVA02-L	65.60	58.40	<u>66.50</u>	63.50	64.40^{\dagger}	76.40^{\dagger}	$\underline{70.40}^{\dagger}$
Rein [54] 🗞	EVA02-L	65.30	60.50	64.90	63.60	64.10	69.50	66.80
Rein [54] 🦫	ViT-L	<u>66.40</u>	60.40	66.10	64.30	65.00	72.30	68.65
tqdm (ours) 🗞	EVA02-L	68.88	59.18	70.10	66.05	<u>64.72</u>	<u>76.15</u>	70.44

📎: CLIP

📎 : EVA-CLIP

₩: DINOv2

The best and second-best results are **highlighted** and <u>underlined</u>, respectively

Experimental Results Qualitative Results on Benchmarks

04

TLDR [ICCV'23] Rein [CVPR'24] tqdm (ours) Unseen Image Ground Truth Cityscapes **BDD100K** Mapillary

road	sidew.	build.	wall	fence	pole	tr.light	sign	veget.	n/a.
terrain	sky	person	rider	car	truck	bus	train	m.bike	bike

Experimental Results

Qualitative Results under Extreme Domain Shifts

road	sidew.	build.	wall	fence	pole	tr.light	sign	veget.	n/a.
terrain	sky	person	rider	car	truck	bus	train	m.bike	bike

Experimental Results

04

Qualitative Results under Extreme Domain Shifts

Textual Query-Driven Mask Transformer for Domain Generalized Segmentation

Supplementary Material

Paper ID #7384

(No audio)

road	sidew.	build.	wall	fence	pole	tr.light	sign	veget.	n/a.
terrain	sky	person	rider	car	truck	bus	train	m.bike	bike

EUROPEAN CONFERENCE ON COMPUTER VISION

MILAN O

Thank you for your attention

https://byeonghyunpak.github.io/tqdm/

Code and paper are available here.