

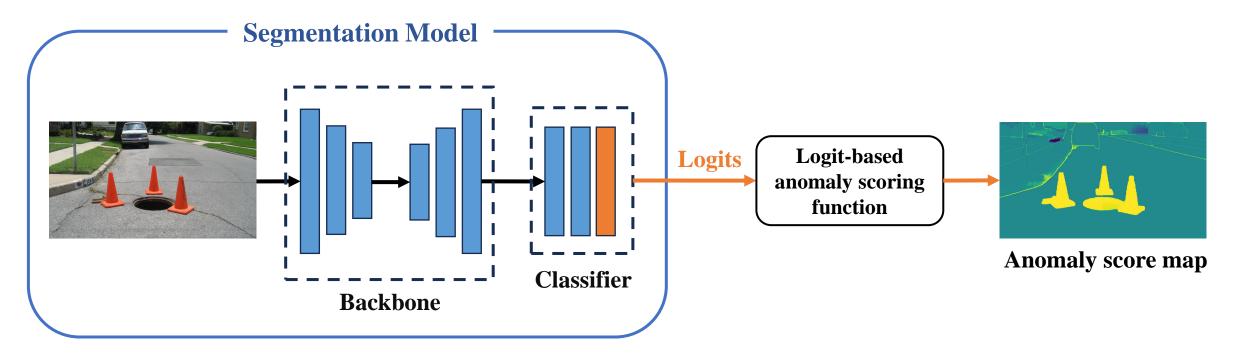
Random Walk on Pixel Manifolds for Anomaly Segmentation of Complex Driving Scenes

Zelong Zeng, Kaname Tomite SenseTime Japan, Tokyo, Japan

The 18th European Conference on Computer Vision ECCV 2024

Anomaly Segmentation for Driving Scenes

• Given a driving scene image, anomaly segmentation detects all anomalous objects on the road.


A input image [1]

The result of anomaly segmentation

Anomaly Segmentation for Driving Scenes

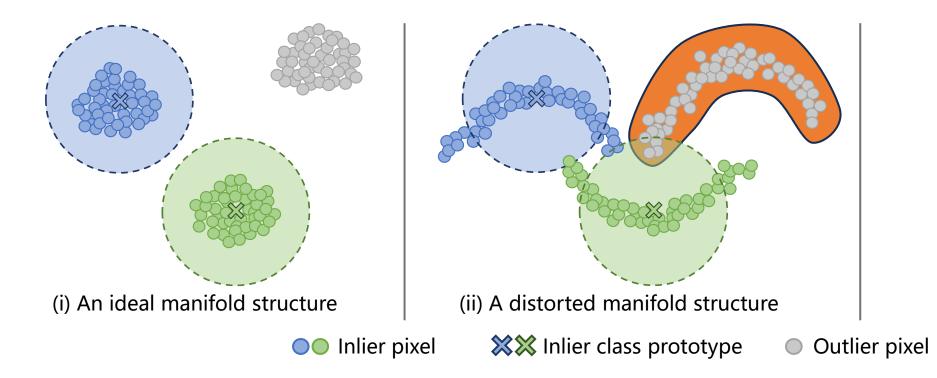
• Most existing state-of-the-art methods design and utilize anomaly scoring functions to calculate anomaly scores for each pixel.

Accurately predicting the logits is crucial for precisely inferring the anomaly score.

Motivation

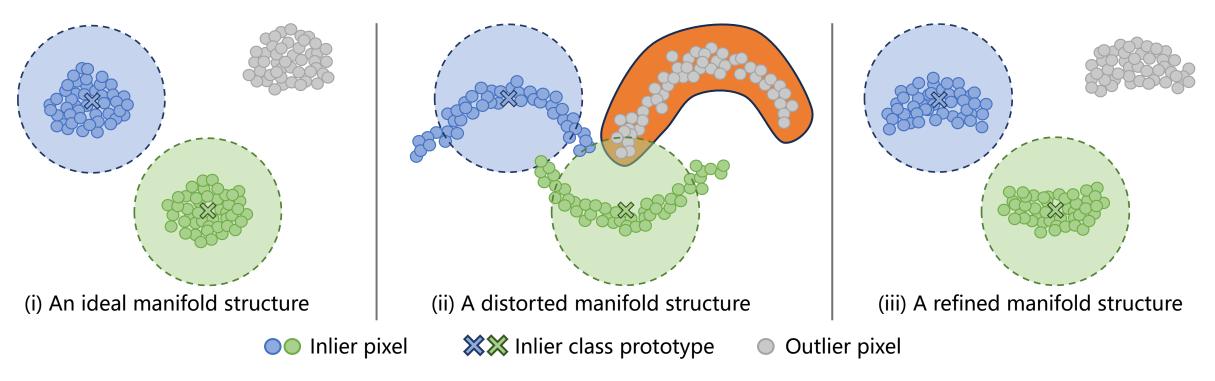
• The diversity of driving scenes.

Training data [2]



Test data [3] in various environmental factors.

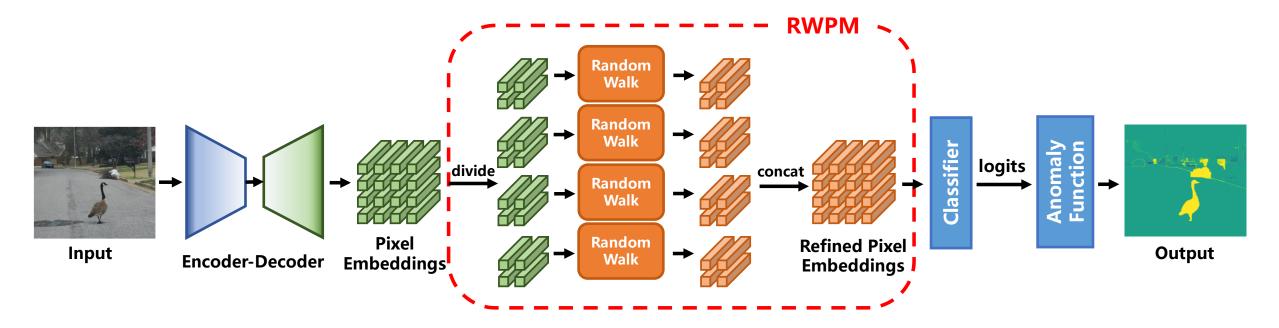
[2] Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." *CVPR 2016*.[3] Chan, Robin, et al. "Segmentmeifyoucan: A benchmark for anomaly segmentation." *NeurIPS 2021*.


Motivation

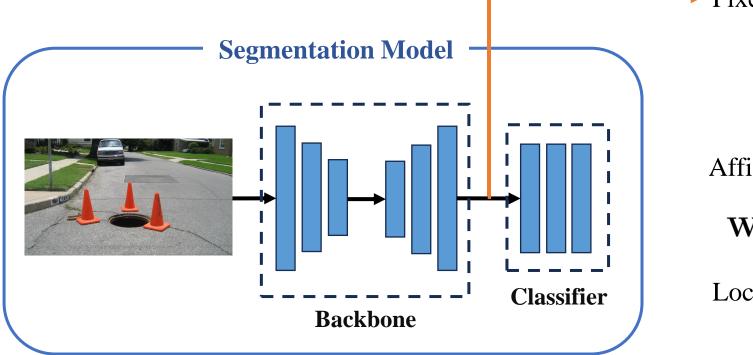
• The diversity of driving scenes often result in distorted manifolds.

Motivation

• The structure of data manifolds implicitly contains the intrinsic relationship among pixel points.


Proposed Method

• Random Walk on Pixel Manifolds (RWPM): RWPM can be directly integrated into existing anomaly segmentation frameworks in the inference phase.



• Overview

RWPM consists of 3 parts: *Graph Construction*, *Random Walk Process* and *Partial Random Walk*

Graph Construction

Pixel embeddings: $p \in \mathbb{R}^{d \times H \times W}$ Reshape $p^r \in \mathbb{R}^{HW \times d}$ Normalize $\widehat{p}_i^r = p_i^r / ||p_i^r||.$

Affinity matrix:

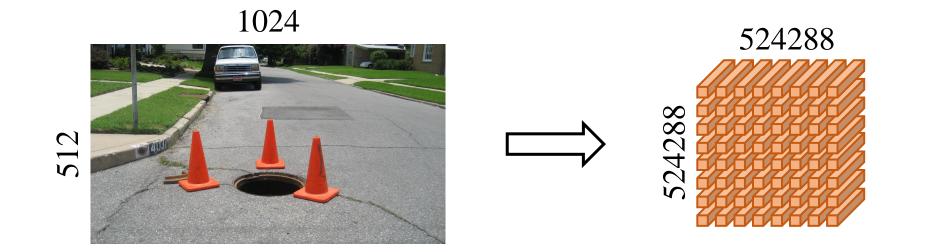
$$\mathbf{W}_{ij} = \begin{cases} \left\langle \widehat{\boldsymbol{p}}_i^r, \widehat{\boldsymbol{p}}_j^r \right\rangle & i \neq j \\ 0 & i = j \end{cases},$$

Locally constrained graph:

$$\mathbf{S}_{ij} = \begin{cases} \frac{\exp(\mathbf{W}_{ij}/\tau)}{\sum_{i=1, i\neq j}^{HW} \exp(\mathbf{W}_{ij}/\tau)} & i \neq j\\ 0 & i = j \end{cases},$$

Random Walk Process

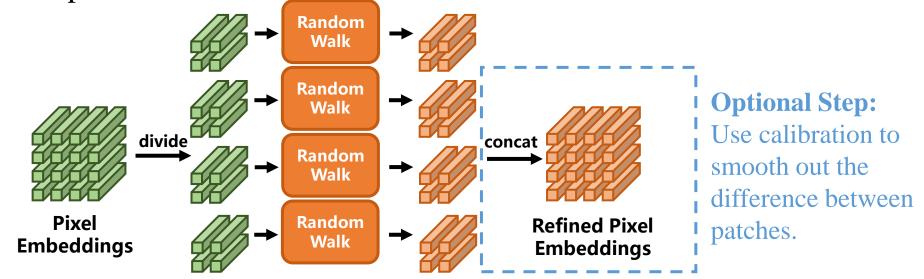
Initialization:


 $\mathbf{m}^0 \stackrel{\text{Initialize as}}{\blacksquare} p^r$

Iteration:

$$\mathbf{m}^{t+1} = \alpha \mathbf{S} \mathbf{m}^t + (1 - \alpha) \mathbf{m}^0, \, \alpha \in (0, 1),$$
Closed-form
$$\mathbf{m}^{\infty} = (1 - \alpha) \left(\mathbf{I} - \alpha \mathbf{S} \right)^{-1} \mathbf{m}^0,$$

Refined pixel embeddings


• Partial Random Walk

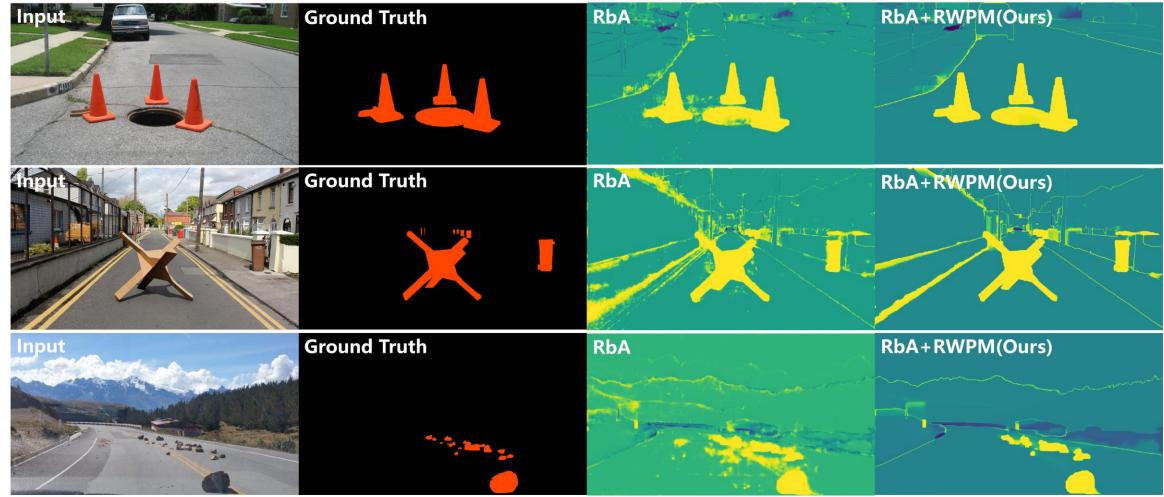
- Partial Random Walk
 - 1. Limited iteration: Iterate only *T* time

 $\mathbf{m}^{t+1} = \alpha \mathbf{S}\mathbf{m}^t + (1 - \alpha) \mathbf{m}^0, \, \alpha \in (0, 1),$

2. Embedding map partitioning: Equally divide the pixel embedding map into some sub-maps.

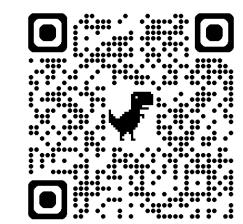
• We integrate RWPM with 4 representative anomaly segmentation methods.

$Benchmark \rightarrow$	Fishysca	pes Lost&	Found	Road Anomaly			
Method \downarrow	Arch	AuROC↑	$\mathrm{AP}\uparrow$	$\mathrm{FPR95}{\downarrow}$	AuROC↑	$AP\uparrow$	$\mathrm{FPR95}{\downarrow}$
$\begin{array}{l} \text{PEBAL} \ [38] \\ \text{PEBAL} + \text{RWPM}^{\dagger} \ (\text{Ours}) \end{array}$	Pixel-base	98.96	58.81	4.77	87.63	45.10	44.58
	Pixel-base	99.20	66.85	3.68	89.48	50.29	36.81
Balanced Energy [12]	Pixel-base	99.03	67.07	2.93	88.31	41.48	41.46
Balanced Energy $+ \text{RWPM}^{\dagger}$ (Ours)	Pixel-base	99.29	72.95	2.38	90.51	48.26	32.10
$\begin{array}{l} {\rm Mask2Anomaly^1} \ [37] \\ {\rm Mask2Anomaly} + {\rm RWPM} \ ({\rm Ours}) \end{array}$	Mask-base	95.41	69.44	9.22	96.54	80.04	13.95
	Mask-base	95.92	69.54	8.13	97.44	80.09	7.45
$\begin{array}{l} {\rm RbA} [35] \\ {\rm RbA} + {\rm RWPM} ({\rm Ours}) \end{array}$	Mask-base	98.62	70.81	6.30	97.99	85.42	6.92
	Mask-base	98.82	71.16	6.12	98.04	87.34	5.27


• Pixel level evaluation: Comparison with state-of-the-art anomaly segmentation methods.

$\text{Benchmark} \rightarrow$		Fishys	capes L&F	Road	Anomaly	Anoma	aly Track	Obsta	cle Track	Av	erage
Method \downarrow	Arch	$ $ AP \uparrow	$\mathrm{FPR95}{\downarrow}$	$ $ AP \uparrow	$\text{FPR95}\downarrow$	$AP\uparrow$	$\mathrm{FPR95}{\downarrow}$	$ $ AP \uparrow	$\mathrm{FPR95}{\downarrow}$	$ $ AP \uparrow	FPR95↓
Synboost [15] (CVPR'21)	Pixel-based	60.58	31.02	41.84	59.72	56.44	61.86	71.34	3.15	57.46	38.94
SML [26] (ICCV'21)	Pixel-based	22.74	33.49	25.82	49.47	46.8	39.5	3.4	36.8	24.69	39.82
Meta-OOD [7] (ICCV'21)	Pixel-based	41.31	37.69	48.84	31.77	85.47	15.00	85.07	0.75	65.13	21.30
Learning Embedding [5](IJCV'21)	Pixel-based	4.65	24.36	-	-	37.52	70.76	0.82	46.38	-	-
Void Classifier [5](IJCV'21)	Pixel-based	10.29	22.11	-	-	36.61	63.49	10.44	41.54	-	-
GMMSeg-DL [28] (NeurIPS'22)	Pixel-based	43.47	13.11	34.42	47.90	-	-	-	-	-	-
DenseHybrid [18] (ECCV'22)	Pixel-based	69.79	5.09	31.39	63.97	77.96	9.81	87.08	0.24	65.56	19.78
PEBAL [38] (ECCV'22)	Pixel-based	58.81	4.77	45.10	44.58	49.14	40.82	4.98	12.68	39.58	25.71
Balanced Energy [12] (CVPR'23)	Pixel-based	67.07	2.93	41.48	41.46	-	-	-	-	-	-
RPL-CoroCL [33] (ICCV'23)	Pixel-based	70.61	2.52	71.61	17.74	83.49	11.68	85.93	0.58	77.91	8.13
Mask2Anomaly [37] (ICCV'23)	Mask-based	69.44	9.22	80.04	13.95	88.62	14.57	<u>93.10</u>	0.20	82.87	9.49
M2F-EAM [19] (CVPRW'23)	Mask-based	52.03	20.51	66.67	13.42	76.3	93.9	66.9	17.9	65.48	36.43
RbA [35] (ICCV'23)	Mask-based	70.81	6.30	85.42	<u>6.92</u>	<u>90.9</u>	11.6	91.8	0.5	<u>84.73</u>	<u>6.33</u>
RbA + RWPM (Ours)	Mask-based	71.16	6.12	87.34	5.27	92.20	<u>10.15</u>	93.30	0.28	86.00	5.46

• Component level evaluation: Comparison with state-of-the-art anomaly segmentation methods.


$\operatorname{Benchmark} \rightarrow$	A	nomaly 7	Frack	Obstacle Track			
Method \downarrow	Arch	$\left\ {\rm ~sIoU~} \right \uparrow$	$\mathrm{PPV}\uparrow$	mean F1 \uparrow	$ $ sIoU \uparrow	$\mathrm{PPV}\uparrow$	mean F1↑
Synboost [15] (CVPR'21)	Pixel-based	34.68	17.81	9.99	44.28	41.75	37.57
SML [26] (ICCV'21)	Pixel-based	26.00	24.70	12.20	5.10	13.30	3.00
Meta-OOD [7] (ICCV'21)	Pixel-based	49.31	39.51	28.72	47.87	63.64	48.51
Void Classifier [5](IJCV'21)	Pixel-based	21.14	22.13	6.49	6.34	20.27	5.41
Learning Embedding [5](IJCV'21)	Pixel-based	33.86	20.54	7.90	35.64	2.87	2.31
JSRNet [39] (ICCV'21)	Pixel-based	20.20	29.27	13.66	18.55	24.46	11.02
DenseHybrid [18] (ECCV'22)	Pixel-based	54.17	24.13	31.08	45.74	50.10	50.72
PEBAL [38] (ECCV'22)	Pixel-based	38.88	27.20	14.48	29.91	7.55	5.54
RPL-CoroCL [33] (ICCV'23)	Pixel-based	49.76	29.96	30.16	52.61	56.65	56.69
Mask2Fromer [37] (ICCV'23)	Mask-based	25.20	18.20	15.30	5.00	21.90	4.80
Maskomaly [2] (BMVC'23)	Mask-based	$\ $ 55.4	51.6	50.0	-	-	-
RbA [35] (ICCV'23)	Mask-based	55.69	52.14	46.80	58.36	58.78	60.85
RbA + RWPM (Ours)	Mask-based	57.00	61.25	58.44	59.47	72.51	69.85

• Qualitative Result.

Thank you !

The Code Link

The 18th European Conference on Computer Vision ECCV 2024