
Efficient Training of Spiking Neural Networks

with Multi-Parallel Implicit Stream Architecture

1. The Dilemma of Training SNNs

2. Deep Equilibrium Model

3. Methods and Model

4. Results and Discussion

1 The Dilemma of Training SNNs Page 2

① Non-differentiability

Due to the spiking process of neurons
being a step function, the derivative
at the spike is infinite, which prevents
the direct use of backpropagation for
training SNNs.

Surrogate
Gradient (SG)

The SG method uses a smooth function,
similar to the step function, to replace the
step function for differential calculations
during the backward process. However, this
approach introduces surrogate errors, which
accumulate over time steps.

1 The Dilemma of Training SNNs Page 3

② Memory Overhead
As the number of simulation
time steps increases during
the training of SNNs, the
memory consumption also
increases. Specifically, each
simulation time step
requires storing all the
activation values of the
current model, leading to a
linear increase in memory
consumption as the number
of simulation time steps
rises. However, it is essential
to explore different
simulation time step
lengths.

2 Deep Equilibrium Model Page 4

① Only One Layer of Activation Values Needs to Be Stored

…

x
z

h[2] h[n]h[1]

θ θ θ

As the number of layers increases, the outputs
of the weight-tied model gradually converge.

Forward Process:
Since the output of the weight-tied network ultimately
converges to a fixed point, the forward process of the
network can be transformed into the process of solving
a fixed point equation. Define a single-layer
network 𝑓𝜃 with the network output ℎ∗. By solving the
equation 𝑓𝜃 ℎ∗; 𝑥 = ℎ∗ , we can obtain the output
of 𝑓𝜃 stacked with infinite layers.

Backward Process:
Since the network's forward process is solved through
root-finding methods for the network output, there is
no explicit path in the forward process. We utilize the
implicit function theorem on the fixed point equation
𝑓𝜃 ℎ∗; 𝑥 = ℎ∗ to replace the backpropagation
calculation of the derivative of the network output ℎ∗

with respect to any parameter ⋅ , denoted as 𝜕ℎ∗ ⋅

𝜕 ⋅
 .

2 Deep Equilibrium Model Page 5

② Integrating Deep Equilibrium Theory with SNNs

By treating SNNs as a weight-tied block
and applying the equilibrium model
theory, we can separate the forward and
backward processes of SNNs.

This allows for error propagation without
explicit backpropagation over time,
facilitating SNN training with constant
memory overhead.

However, both SNNs and the equilibrium
model encounter time delay issues,
including simulation time and fixed point
solving time, which we address through a
shallower parallel structure.

Conv LIF

Conv

+

T times

Conv LIF

Conv

+

A Single Time Step Simulation Is Equivalent to an Arbitrarily
Long Simulation Time.

Firing rate

3 Methods and Model Page 6

① MPIS-SNNs

MPIS-SNNs

The main idea of MPIS is to reduce the
simulation time of a single time step
in SNNs by decomposing their
vertical complexity. Additionally, it
accelerates model convergence by
merging feature maps from various
implicit streams (IS), thus reducing the
number of iterations required for fixed
point solving and shortening the
forward process time. Although
shallower IS can lower the time cost of
the forward process, a clear issue
arises from the reduced model
complexity. To address this, we
parallelly increase model parameters
and inject input only into the top
layer of the IS to ensure the model's
capacity.

3 Methods and Model Page 7

② Double-Bounded Rectified Linear Unit (DBReLU)

Conv LIF

Conv

+

T times

FC CEL

Conv LIF

We observe that when SNNs have a multi-layer structure, even when using a single
time step equivalent to T time steps for gradient computation, the presence of the
step function (neuron spikes) within SNNs prevents direct calculation of derivatives.
Inspired by the conversion of ANNs to SNNs and the implicit differentiation in
equilibrium SNNs, we derive the Double-Bounded Rectified Linear Unit (DBReLU) as a
firing rate calculation function for SNNs when reaching equilibrium states.

Firing rate

3 Methods and Model Page 8

② Double-Bounded Rectified Linear Unit (DBReLU)

Firing Rate Curves of Neurons with Different Thresholds

In ANNs-SNNs, neurons simulate the ReLU
function, with performance positively
correlated to the number of simulation time
steps. However, hardware limitations
prevent indefinite increases in simulation
steps. In MPIS-SNNs, the final output
represents the model's fixed point,
equivalent to the firing rate after infinite
time steps. At this stage, Integrate-and-Fire
(IF) neurons serve as unbiased estimators
of the linear rectifier over time, but since
firing rates cannot exceed 1, 1 is set as the
upper bound.

DBReLU：

𝑟𝑖
𝑙 = 𝑀𝑖𝑛 𝑀𝑎𝑥 0,

σ𝑗=1
𝑀𝑙−1

𝑊𝑖𝑗
𝑙 𝑟𝑗

𝑙−1

𝑉𝑡ℎ
, 1

4 Results and Discussion Page 9

① Comparison with the BPTT Training Method

Method Size Architecture T Acc Time Memory

Fashion-
MNIST

BPTT 133K
16C3-32C3-48C3-

FC10

30 89.60% 31s 2.1G

100 89.70% 1min32s 4.8G

MPIS 133K
16C3-32C3-48C3-

FC10

30 93.14% 30s 1.2G

100 93.23% 1min27s 1.2G

N-MNIST

BPTT 213K
32C3-32C3-64C3-

FC10

30 98.21% 1min24s 12.8G

100 - -
Out of

memory

MPIS 213K
32C3-32C3-64C3-

FC10
30 99.31% 1min35s 3.3G

100 99.27% 5min5s 3.3G
Firing Rate

Layer1 Layer2 Layer3
BPTT 5.06e-2 7.24e-2 8.98e-2
MPIS 8.0e-4 7.0e-4 7.3814e-5

MPIS-SNNs have a constant memory cost
independent of simulation duration, while BPTT's
memory cost increases with simulation length.
MPIS-SNNs also have a lower firing rate, leading to
reduced energy consumption.

4 Results and Discussion Page 10

② Comparison with Conventional Equilibrium SNNs

Method Size T Acc Time

CIFAR-10

IDE-Nets 11.8M
30 90.37% 12min10s

100 90.57% 22min34s

MPIS-SNNs
11.8M 30 92.79% 2min34s

28.5M 30 93.27% 3min48s

CIFAR-100

IDE-Nets 14.8M
30 70.26% 12min33s

100 71.12% 21min50s

MPIS-SNNs
14.8M 30 73.19% 5min33s

30.0M 30 74.40% 8min38s

In terms of accuracy, MPIS-SNNs achieve higher accuracy with fewer simulation time
steps. Regarding speed, MPIS-SNNs, despite having more parameters, are still faster
than IDE-Net.

4 Results and Discussion Page 11

③ Convergence Speed of MPIS-SNNs

SingleRes represents the convergence curve of conventional equilibrium SNNs, while MulResn denotes
the convergence curve of the n-th implicit stream branch of MPIS-SNNs. The convergence rate and
final stability of each branch in MPIS-SNNs are superior to those of conventional equilibrium SNNs.

0

20

40

60

80

100

120

140

1 11 21 31 41 51 61 71 81 91

D
if

fe
re

n
ce

 N
o

rm
 ∆

𝑟
(𝑡

)

Time Steps

SingleRes

MulRes1

MulRes2

0

20

40

60

80

100

120

1 11 21 31 41 51 61 71 81 91

D
if

fe
re

n
ce

 N
o

rm
 ∆

𝑟
(𝑡

)

Time Steps

SingleRes

MulRes1

MulRes2

0

50

100

150

200

250

300

350

400

1 11 21 31 41 51 61 71 81 91

D
if

fe
re

n
ce

 N
o

rm
 ∆

𝑟
(𝑡

)

Time Steps

SingleRes

MulRes1

MulRes2

N-MNIST CIFAR-10 CIFAR-100

4 Results and Discussion Page 12

④ Comparing with the Latest Efficient Training Methods for SNNs

Method T Accuracy

N-MNIST

IDE-Net(2021)[14] 30 99.47%

HS-IF(2023)[43] 15 99.44%

MPIS 30 99.51%

Fashion-
MNIST

IDE-Net(2021)[14] 5 90.25%

LTC-SNNs(2023)[27] 784 93.58%

MPIS 1 93.83%

CIFAR-10

Hybrid SL(2021)[44] 100 91.29%
Temporal pruning

(2022) [40]
1 93.05%

OTTT(2022)[28] 6 93.73%
AC2AS (2023)[8] 5 92.88%

MPIS 10 93.27%

CIFAR-
100

IDE-Net(2021)[14] 100 73.43%

Hybrid SL(2021)[44] 120 64.98%
Temporal pruning

(2022)[40]
1 70.15%

OTTT(2022)[28] 6 71.11%
AC2AS (2023)[8] 5 73.61%

MPIS 5 74.93%

MPIS-SNNs are highly competitive in various
tasks, particularly, MPIS-SNNs have achieved
optimal performance on the N-MNIST,
Fashion-MNIST, and CIFAR-100 datasets.

Thanks

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13

