

Post-Training Quantization (PTQ)

- PTQ is an effective approach for quantizing pre-trained models using a small calibration dataset.
- Most previous works (e.g., QDrop, PD-Quant, and Genie) rely only on the original calibration data for training and lack a validation set to validate the quantized models. This could make the quantized models prone to overfitting.

Contributions

- A novel meta-learning-based approach to mitigate overfitting in PTQ
 - ✓ A transformation network and a quantized model are jointly optimized through bi-level optimization.
 - \checkmark The outputs of the transformation network are used to train the quantized model, while the original data is used to validate it.
- We investigate various losses for training the transformation network to preserve information from the original data, and introduce a margin loss to prevent it from becoming an identity mapping.

Proposed Method

Meta-learning formulation for PTQ

Bi-level optimization

$$T^* = \arg \min_{T} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{val}(\hat{\theta}_Q, x_i)$$

s.t.: $\hat{\theta}_Q = \arg \min_{\theta_Q} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_Q(\theta_Q, T(x_i))$

Regarding \mathcal{L}_{O}

$$\mathcal{L}_{Q}(\theta_{Q}, T(S)) = \frac{1}{N} \sum_{i=1}^{N} \|A_{FP}^{l}(T(x_{i}) - A_{Q}^{l}(T(x_{i}))\|^{2}$$

Regarding \mathcal{L}_{val}

$$\mathcal{L}_{val}(\hat{\theta}_Q, S) = \frac{1}{N} \sum_{i=1}^{N} KL \left[\sigma(f_{\theta_{FP}}(x_i) \parallel \sigma(f_{\widehat{\theta}_Q}(x_i)) \right]$$

MetaAug: Meta-Data Augmentation for Post-Training Quantization

Cuong Pham¹, Hoang-Anh Dung¹, Cuong C. Nguyen², Trung Le¹, Dinh Phung^{1,3}, Gustavo Carneiro², Thanh-Toan Do¹

¹ Department of Data Science and AI, Monash University, Australia ² Centre for Vision, Speech and Signal Processing, University of Surrey, UK ³ VinAI. Vietnam

Proposed Method

Properties of transformation network T

• Encouraging generated images $S^g = \{T(x_i)\}_{i=1}^N$ retain information of the

original images $S = \{x_i\}_{i=1}^N$.

• Prevent the transformation network from becoming an identity mapping.

Update transformation network T

Information preservation

$$\mathcal{L}_{DP}(T,S) = \frac{1}{N} \sum_{i=1}^{N} KL \left[\mathcal{P}_i \parallel \mathcal{P}_i^{(g)} \right]$$

$$\mathcal{P}_{i\mid j} = \frac{K(f_{\theta_{FP}}(x_i), f_{\theta_{FP}}(x_j))}{\sum_{\substack{k=1\\k\neq i}} K(f_{\theta_{FP}}(x_k), f_{\theta_{FP}}(x_j))}$$

Identity prevention

$$\mathcal{L}_{margin}(T,S) = \frac{1}{N} \sum_{i=1}^{N} \max\left(0, \epsilon - \frac{1}{M} \|x_i - T(x_i)\|^2\right)$$

Overall loss for training *T*

 $\mathcal{L}_{T}(T,S) = \alpha \mathcal{L}_{val}(\hat{\theta}_{Q},S) + \beta \mathcal{L}_{margin}(T,S) + \gamma \mathcal{L}_{DP}(T,S)$

Algorithms

Alg	orithm 1 Data modification for post-training quantization.					
1: 1	procedure $\text{Train}(\theta_{\text{FP}}, S)$					
2:	$\triangleright \theta_{\rm FP}$: weight of the full-precision model.					
3:	\triangleright L: Number of blocks in the full-precision model.					
4:	\triangleright S: Calibration data.					
5:	$\triangleright N_T$: Number of iterations to update T.					
6:	$\triangleright N_Q$: Number of iterations to quantize model.					
7:	\triangleright T: Transformation network to modify calibration dataset S.					
8:	Initialize the quantized model θ_Q from θ_{FP} using LAPQ					
9:	Warm up the transformation network T .					
10:	for $l = 1$ to L do					
11:	for $t = 1$ to N_T do					
12:	Sample a mini-batch: $\mathbb{B} = \{x_i : x_i \sim S\}$					
13:	Modify \mathbb{B} with the transformation network T to get $T(\mathbb{B}) = \{T(x_i)\}_{i=1}^{ \mathbb{B} }$					
14:	\triangleright Forward pass and update the quantized model using modified data. \triangleleft					
15:	Compute: $\mathcal{L}_Q(\theta_Q, T(\mathbb{B})) = \frac{1}{ \mathbb{B} } \sum_{i=1}^{ \mathbb{B} } A_{FP}^l(T(x_i)) - A_Q^l(T(x_i)) ^2$					
16:	Update $\widehat{\theta}_Q$: $\widehat{\theta}_Q \leftarrow \operatorname{Adam}(\mathcal{L}_Q(\theta_Q, T(\mathbb{B})))$					
17:	$\triangleright \ Validate \ \widehat{\theta}_Q \ on \ the \ original \ calibration \ data. \ \lhd$					
18:	Sample a mini-batch data: $\mathbb{B}^v = \{x^v_i: x^v_i \sim \mathcal{S}\}$					
19:	$\text{Compute: } \mathcal{L}_T(T,\mathbb{B}^v)$					
20:	$\text{Update } T \colon T \leftarrow \operatorname{Adam}(\mathcal{L}_T(T, \mathbb{B}^v))$					
21:	$\triangleright \text{ Quantize } l^{th} \text{ block of } \theta_Q \text{ using the original calibration data } S \text{ and mod-} if ied data with the learned } T. $					
22:	for $t = 1$ to N_O do					
23:	Sample a mini-batch: $\mathbb{B}_q = \{x_{qi} : x_{qi} \sim S_q = T(S) \cup S\}$					
24:	Compute: $\mathcal{L}_Q(\theta_Q, \mathbb{B}_q) = \frac{1}{ \mathbb{B}_q } \sum_{i=1}^{ \mathbb{B}_q } A_{FP}^l(x_{qi})) - A_Q^l(x_{qi}) ^2$					
25:	Update: $\theta_Q \leftarrow \operatorname{Adam}(\mathcal{L}_Q(\theta_Q, \mathbb{B}_q))$					
26:	return quantized model $\theta_{\rm Q}$ and T.					

Wei, Xiuying, et al. "QDrop: Randomly dropping quantization for extremely low-bit post-training quantization." ICLR 2022. Liu, Jiawei, et al. "PD-Quant: Post-training quantization based on prediction difference metric." CVPR. 2023. Jeon, Yongkweon, Chungman Lee, and Ho-young Kim. "Genie: show me the data for quantization." CVPR 2023.

EUROPEAN CONFERENCE ON COMPUTER VISION

MILAN O

Experimental Results

	Bit-width Acci		uracy on	Accuracy on the	e Train-test	
Method	(W/A)	the	test set	calibration set	accuracy gap	
FP	32/32	71.01		85.16	14.15	
QDrop 46	· · · · ·	5		77.53	26.39	
PD-Quant [24]	0/0	53.14		83.30	30.16	
Genie-M [16]	2/2	53.77		80.18	27.01	
MetaAug (Ours)			54.22	77.64	23.42	
QDrop 46				81.64	16.98	
PD-Quant 24	0/4		65.17	84.38	19.21	
Genie-M [16]	Z/4		65.77	84.18	18.41	
MetaAug (Ours)			66.01	82.91	16.90	
Method	Bit-width		ResNet-18	18 ResNet-50	MobileNetV2	
	(W/	A)				
FP	32/	32	71.01	76.63	72.20	
AdaRound 28			67.96	73.88	61.52	
BRECQ [*] [21]	•		69.60	75.05	66.57	
QDrop 46			69.10	75.03	67.89	
QDrop* 46			69.62	75.45	68.84	
PD-Quant 24	4/	4	69.23	75.16	68.19	
Genie-M [16]	,		69.35	75.21	68.65	
Bit-Shrinking*	23		69.94	76.04	69.02	
MetaAug (Our	s)		69.48	75.29	68.76	
MetaAug* (Ou	urs)		69.97	75.78	69.22	
Ada Davin d. [00]			64.14	69.40	41 50	
AdaKound 28			64.14	68.40 70.00	41.52	
BRECQ* [21]			64.80	70.29	53.34	
QDrop [46]				71.07	54.27	
QDrop [*] [46]	3/	3/3	66.75	72.38	57.98	
Genie [16]			66.16	71.61	57.54	
Bit-Shrinking*	23		67.12	72.91	58.66	
MetaAug (Our	MetaAug (Ours)		66.37	71.73	57.77	
MetaAug [*] (Ou	urs)		67.66	73.04	59.87	
$BRECQ^*$ [21]			64.80	70.29	53.34	
QDrop 46			64.66	70.08	52.92	
$QDrop^*$ [46]			65.25	70.65	54.22	
PD-Quant 24	2 /		65.17	70.77	55.17	
Genie-M [16]	2/-	4	65.77	70.51	56.38	
Bit-Shrinking*	23		65.77	71.11	54.88	
MetaAug (Our	s)		66.01	70.76	56.45	
MetaAug* (Ou	irs)		66.48	71.48	56.65	
BRECO* [21]			42.54	29.01	0.24	
ODrop 46			51 14	54 74	8.46	
ODrop*46	2/2		54 79	58 67	13 05	
PD-Quant [24]			52 14	57 16	13 76	
Cenie M [16]			52 71	56 71	16.25‡	
Bit_Shrinking*	[23]		57 22	50.71	18.92	
Moto Aug (Our	[20]		54.99	59.05	16.20	
MetaAug (Our	.8)		54.22	07.30 60 E0	10.97	
MetaAug [*] (Ot	iis)		57.89	00.50	19.01	

Visualization

Original images

Modified images

References