

Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning

Jia-Hao Xiao 1, Ming-Kun Xie 1, Heng-Bo Fan 1, Gang Niu 2,

Masashi Sugiyama^{2,3} and Sheng-Jun Huang¹

¹ Nanjing University of Aeronautics and Astronautics, Nanjing, China ² RIKEN Center for Advanced Intelligence Project, Tokyo, Japan ³ The University of Tokyo, Tokyo, Japan

> {jiahaoxiao, mkxie, fan_heng_bo, huangsj}@nuaa.edu.cn gang.niu.ml@gmail.com sugi@k.u-tokyo.ac.jp

ECCV 2024

Multi-Label Learning

• Multi-Label Learning vs. Ordinary Supervised Learning

Ordinary supervised learning (only one ground-truth label)

Multi-Label learning (multiple ground-truth labels)

Semi-Supervised Multi-Label Learning

-
- A *Great* number of unlabeled data and *few* labeled data

Unlabeled data

Labeled data

- How to generate *high-quality* pseudo-labels?
	- Depend on two key factors:

Model Prediction; (2) Selection Strategy.

◦ **Previous methods** merely focused on capturing the true class proportions, while neglecting the quality of model predictions.

◦ **Our methods** aims to generate high-quality pseudo-labels from both: (a) develop the **D**ual-**D**ecoupling **L**earning (**D2L**) framework to obtain model predictions; (b) design the **M**etric-**A**daptive **T**hresholding (**MAT**) method to acquire proper thresholds.

• **D**ual-**D**ecoupling **L**earning (**D2L**) framework

(1) *Correlative and Discriminative Features Decoupling*

(2) *Generation and Utilization of Pseudo-Labels Decoupling*

Method - ②

• **M**etric-**A**daptive **T**hresholding (**MAT**) method

Search the best threshold for each class.

Fig. 5: An illustration of MAT. By feeding instances into the model $f(.) \circ \overline{h}(.)$, we obtain the predictions. By adjusting τ_k , we can achieve the optimal pseudo-labeling performance $\mathcal{M}(Y_k, Y_k)$.

Algorithm 1 Pseudo code of the proposed algorithm.

Input: Labeled data $\mathcal{D}_L = \{(\boldsymbol{x}_i)_{i=1}^N, Y\}$, Unlabeled data $\mathcal{D}_U = \{\boldsymbol{x}_j\}_{i=1}^M$, backbone $f(\cdot)$, two dual-head classifiers $\{\widehat{h}^g(\cdot), \widehat{h}^l(\cdot)\}\$ and $\{h^g(\cdot), h^l(\cdot)\}\$, metric function $\mathcal{M}(\cdot, \cdot),$ class number K , small step t .

- 1: Warm up the backbone $f(\cdot)$ and one classifier $\{\widehat{h}^g(\cdot), \widehat{h}^l(\cdot)\}$ on \mathcal{D}_L with Eq. (1).
- 2: for each *epoch* do
- Input labeled data $\{\boldsymbol{x}_i\}_{i=1}^N$ into $f(\cdot)$ and $\{\widehat{h}^g(\cdot), \widehat{h}^l(\cdot)\}\)$ to get outputs $\{\hat{\boldsymbol{q}}_i\}_{i=1}^N$. 3:
- for $\forall k \in [K], \tau_k = 0$ to 1 by t do $4:$
- Pseudo-label \mathcal{D}_L in class k by τ_k , $\hat{Y}_k = {\hat{y}_{ik}}_{i=1}^N = {\mathbb{I}(\hat{q}_{ik} \geq \tau_k)}_{i=1}^N$. 5:
- Select the τ_k which achieves the highest $\mathcal{M}(\hat{Y}_k, Y_k)$ as τ_k^{\star} (Eq. (6)). $6:$
- end for 7:
- Pseudo-label \mathcal{D}_U with Eq. (5), then train $f(\cdot), \{\widehat{h}^g(\cdot), \widehat{h}^l(\cdot)\}\$ and $\{h^g(\cdot), h^l(\cdot)\}$ 8: on \mathcal{D}_L and \mathcal{D}_U together using the D2L framework as shown in Fig. 1.

 $9:$ end for

Experiments - Main Results

Method BCE ASL LL [*] PLC Top-* IAT ADSH FM DRML CAP Ours						
$p = 0.01$ 16.71 34.81 36.01 43.91 38.61 34.39 45.06 44.98 38.90 41.28 49.09						
$p = 0.05$ 67.95 71.46 75.79 74.49 75.77 73.24 75.37 75.11 61.77 76.16 79.26						
$p = 0.10$ 75.35 78.00 81.04 80.35 80.78 80.27 80.34 80.66 71.01 82.16 84.06						
$p = 0.15$ 78.19 79.69 82.36 82.35 82.65 82.39 82.80 82.63 72.98 83.48 86.25						
$p = 0.20$ 79.38 80.77 83.68 83.39 83.72 83.55 83.93 83.60 74.49 84.41 87.16						

Results on COCO.

Method BCE ASL LL [*] PLC Top [*] IAT ADSH FM DRML CAP Ours						
$p = 0.01$ 44.11 44.87 45.36 48.95 48.40 46.41 47.93 47.10 39.12 52.40 56.59						
$p = 0.05$ 58.90 59.12 59.33 59.85 58.25 60.34 60.75 59.94 53.60 62.43 69.30						
$p = 0.10$ 63.75 63.82 64.25 65.03 63.52 65.54 65.37 64.46 57.06 67.36 73.06						
$p = 0.15$ 65.91 66.10 66.69 67.62 66.11 67.88 67.70 66.79 58.53 69.11 74.63						
$p = 0.20$ 67.33 67.51 68.12 69.14 67.49 69.25 69.01 68.04 59.24 70.41 75.70						

Results on NUS.

Experiments - Performance of Pseudo-labeling

Table 4: Mean and standard deviation of $mAP(\%)$ in CAP and our method, on three datasets, along with the time/memory comparison. 'Time' is the training time per epoch, including the process of threshold updating, 'GPU' is the max memory allocated during training phase.

Experiments - Parameter Sensitivity Analyses

(a) The ablation study (b) The ablation study (c) The ablation study (d) The ablation study on metric $\mathcal{M}(\cdot, \cdot)$. on β in metric F_{β} . on number of patches *n*. on temperature α .

Fig. 3: The analyses of parameters in $D2L$ and MAT: $(a-b)$ The results of various metric functions $\mathcal{M}(\cdot,\cdot)$ used in MAT and different β values used in metric F_{β} , at $p = \{0.05, 0.1, 0.15, 0.2\}$ on COCO; (c-d) The analyses of two parameters, number of patches *n* and temperature α in D2L framework, at $p = 0.05$ on three datasets. The parameter analyses under other settings will be presented in Appendix E .

Table 2: Mean average precision (mAP $\%$) of the baseline incorporated with different components, on datasets VOC and COCO. The baseline here indicates the method CAP (the results of the first row, without any components).

Experiments - Case Study

Fig. 4: Visualization of attention maps on COCO. Each patch is cropped from the original image starting from the beginning of a row. The class label attached in front of every original image or cropped patch is activated in the attention map.

南京航空航天大學

Nanjing University of Aeronautics and Astronautics

T H A N K S