

Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning

Jia-Hao Xiao ¹, Ming-Kun Xie ¹, Heng-Bo Fan ¹, Gang Niu ²,

Masashi Sugiyama^{2,3} and Sheng-Jun Huang¹

¹ Nanjing University of Aeronautics and Astronautics, Nanjing, China
² RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
³ The University of Tokyo, Tokyo, Japan

{jiahaoxiao, mkxie, fan_heng_bo, huangsj}@nuaa.edu.cn gang.niu.ml@gmail.com sugi@k.u-tokyo.ac.jp

ECCV 2024

Multi-Label Learning

• Multi-Label Learning vs. Ordinary Supervised Learning

Ordinary supervised learning (only one ground-truth label)

Multi-Label learning (multiple ground-truth labels)

Semi-Supervised Multi-Label Learning

• A Great number of unlabeled data and few labeled data

Unlabeled data

Labeled data

- How to generate *high-quality* pseudo-labels?
 - Depend on two key factors: ① <u>Model Prediction</u>;

② <u>Selection Strategy</u>.

• **Previous methods** merely focused on capturing the true class proportions, while neglecting the quality of model predictions.

Our methods aims to generate high-quality pseudo-labels from both:
(a) develop the Dual-Decoupling Learning (D2L) framework to obtain model predictions;
(b) design the Metric-Adaptive Thresholding (MAT) method to acquire proper thresholds.

• Dual-Decoupling Learning (D2L) framework

(1) Correlative and Discriminative Features Decoupling

(2) Generation and Utilization of Pseudo-Labels Decoupling

Method - 2

• Metric-Adaptive Thresholding (MAT) method

Search the best threshold for each class.

Fig. 5: An illustration of MAT. By feeding instances into the model $f(\cdot) \circ \hat{h}(\cdot)$, we obtain the predictions. By adjusting τ_k , we can achieve the optimal pseudo-labeling performance $\mathcal{M}(\hat{Y}_k, Y_k)$.

Algorithm 1 Pseudo code of the proposed algorithm.

Input: Labeled data $\mathcal{D}_L = \{(\boldsymbol{x}_i)_{i=1}^N, Y\}$, Unlabeled data $\mathcal{D}_U = \{\boldsymbol{x}_j\}_{j=1}^M$, backbone $f(\cdot)$, two dual-head classifiers $\{\hat{h}^g(\cdot), \hat{h}^l(\cdot)\}$ and $\{h^g(\cdot), h^l(\cdot)\}$, metric function $\mathcal{M}(\cdot, \cdot)$, class number K, small step t.

- 1: Warm up the backbone $f(\cdot)$ and one classifier $\{\widehat{h}^g(\cdot), \widehat{h}^l(\cdot)\}$ on \mathcal{D}_L with Eq. (1).
- 2: for each epoch do
- 3: Input labeled data $\{\boldsymbol{x}_i\}_{i=1}^N$ into $f(\cdot)$ and $\{\widehat{h}^g(\cdot), \widehat{h}^l(\cdot)\}$ to get outputs $\{\widehat{\boldsymbol{q}}_i\}_{i=1}^N$.
- 4: for $\forall k \in [K], \tau_k = 0$ to 1 by t do
- 5: Pseudo-label \mathcal{D}_L in class k by τ_k , $\hat{Y}_k = \{\hat{y}_{ik}\}_{i=1}^N = \{\mathbb{I}(\hat{q}_{ik} \ge \tau_k)\}_{i=1}^N$.
- 6: Select the τ_k which achieves the highest $\mathcal{M}(\hat{Y}_k, Y_k)$ as τ_k^{\star} (Eq. (6)).
- 7: end for
- 8: Pseudo-label \mathcal{D}_U with Eq. (5), then train $f(\cdot)$, $\{\widehat{h}^g(\cdot), \widehat{h}^l(\cdot)\}$ and $\{h^g(\cdot), h^l(\cdot)\}$ on \mathcal{D}_L and \mathcal{D}_U together using the D2L framework as shown in Fig. 1.
- 9: end for

Experiments - Main Results

Resu	ts	on	VC)C

Method	BCE	ASL	LL-*	PLC	Top-*	IAT	ADSH	FM	DRML	CAP	Ours
p = 0.01	16.71	34.81	36.01	43.91	38. <mark>6</mark> 1	34.39	45.06	44.9 8	38.90	<u>41.2</u> 8	49.09
p = 0.05	67.95	71.46	75.79	74.49	75.77	73.24	75.37	75.11	61.77	76.16	79.26
p = 0.10	75.35	78.00	81.04	80.35	80.78	80.27	80.34	80.66	71.01	82.16	84.06
p = 0.15	78.19	79.69	82.36	82.35	82.65	82.39	82.80	82.63	72.98	83.48	86.25
p = 0.20	79.38	80.77	83.68	83.39	83.72	83.55	83.93	83.60	74.49	84.41	87.16

Results on COCO.

Method	BCE	ASL	LL-*	PLC	Top-*	IAT	ADSH	FM	DRML	CAP	Ours
p = 0.01	44.11	44.87	45.36	48.95	48.40	46.41	47.93	47.10	39.12	52.40	56.59
p = 0.05	58.90	59.12	59.33	59.85	58.25	60.34	60.75	59.94	53.60	62.43	69.30
p = 0.10	63.75	63.82	64.25	65.03	63.52	65.54	65.37	64.46	57.06	67.36	73.06
p = 0.15	65.91	66.10	66.69	67.62	66.11	67.88	67.70	66.79	58.53	69.11	74.63
p = 0.20	67.33	67.51	68.12	69.14	67.49	69.25	69.01	68.04	59.24	70.41	75.70

Results on NUS.

Method	BCE	ASL	LL-*	PLC	Top-*	IAT	ADSH	FM	DRML	CAP	Ours
p = 0.01	29.58	30.51	20.70	33. <mark>5</mark> 9	26.84	26.28	33.13	32.10	17.40	24.75	38.09
p = 0.05	41.09	42.87	40.20	43.55	40.99	42.58	43.94	43.12	30.61	44.82	46.86
p = 0.10	45.39	46.50	44.95	47.51	45.07	46.60	47.28	46.65	35.09	48.24	50.25
p = 0.15	47.30	48.42	47.32	49.75	47.43	48.76	49.22	48.74	37.91	49.90	51.61
p = 0.20	48.36	49.65	48.31	50.71	48.49	49.62	49.93	49.59	39.98	51.06	52.64

Experiments - Performance of Pseudo-labeling

Table 4: Mean and standard deviation of mAP(%) in CAP and our method, on three datasets, along with the time/memory comparison. 'Time' is the training time per epoch, including the process of threshold updating, 'GPU' is the max memory allocated during training phase.

Methods		CAP		Ours					
Datasets	VOC	COCO	NUS	VOC	COCO	NUS			
p = 0.05	77.15 ± 0.58	63.11 ± 0.35	$45.30{\pm}0.30$	81.45±1.50	$70.15{\pm}0.48$	47.42 ± 1.00			
p = 0.10	82.54 ± 0.20	$67.96{\scriptstyle \pm 0.32}$	$48.89 {\pm} 0.37$	85.65 ± 0.92	$73.65{\scriptstyle \pm 0.34}$	$51.01{\pm}0.43$			
p = 0.15	$83.95 {\pm} 0.24$	69.92 ± 0.41	$50.53{\scriptstyle \pm 0.54}$	87.02 ± 0.67	$75.18{\scriptstyle\pm0.31}$	$52.15{\scriptstyle\pm0.46}$			
p = 0.20	85.04 ± 0.32	$71.23{\pm}0.42$	$51.82{\pm}0.43$	87.83 ± 0.38	$76.21{\scriptstyle\pm0.30}$	$53.37{\pm}0.43$			
Time	0.9min	$10.3 \min$	12.2min	1.7min	$21.8 \mathrm{min}$	38.9min			
GPU	ĺ.	11.1G			14.2G				

Experiments - Parameter Sensitivity Analyses

(a) The ablation study (b) The ablation study (c) The ablation study (d) The ablation study on metric $\mathcal{M}(\cdot, \cdot)$. on β in metric F_{β} . on number of patches n. on temperature α .

Fig. 3: The analyses of parameters in D2L and MAT: (a-b) The results of various metric functions $\mathcal{M}(\cdot, \cdot)$ used in MAT and different β values used in metric F_{β} , at $p = \{0.05, 0.1, 0.15, 0.2\}$ on COCO; (c-d) The analyses of two parameters, number of patches n and temperature α in D2L framework, at p = 0.05 on three datasets. The parameter analyses under other settings will be presented in Appendix E.

Table 2: Mean average precision (mAP %) of the baseline incorporated with different components, on datasets VOC and COCO. The baseline here indicates the method CAP (the results of the first row, without any components).

MAT	6 <u>.</u> 2	D2L		V	/OC		COCO				
WITTI	CDE	GUD	p=0.05	p = 0.10	p = 0.15	p = 0.20	p=0.05	p = 0.10	p = 0.15	p=0.20	
			76.16	82.16	83.48	84.41	62.43	67.36	69.11	70.41	
~			76.87	82.59	84.29	85.16	65.03	68.87	70.54	71.54	
\checkmark	\checkmark		77.11	83.48	85.72	86.55	66.07	70.72	72.92	74.26	
\checkmark	\checkmark	\checkmark	79.26	84.06	86.25	87.16	69.30	73.06	74.63	75.70	

Experiments - Case Study

Fig. 4: Visualization of attention maps on COCO. Each patch is cropped from the original image starting from the beginning of a row. The class label attached in front of every original image or cropped patch is activated in the attention map.

南京航空航天大學

Nanjing University of Aeronautics and Astronautics

THANKS