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Problem Setting

Clipart
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Drawing

- Unsupervised Domain 
Adaptation (UDA) aims to 
bridge the gap between 
source and target domains.

- Training set is source (label) 
and target (unlabeled) 
images, and test set is 
target (label).



Motivation

Fine-tune CLIP on VISDA-2017

- CLIP achieves competitive 
accuracy out of the box.

- But fine-tuning CLIP quickly 
overrides pre-trained 
knowledge (catastrophic 
forgetting).

- We proposed to mitigate 
catastrophic forgetting by 
hypervector.
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The baseline of CLIP in UDA is to fine-tune with cross entropy loss in source domain, and 
use zero-shot prediction to generate pseudo-label for target domain
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We convert features into high-dimensional vector space (hypervector). Hypervector is 
   robust to catastrophic forgetting due to the large feature dimension (e.g., 2 millions).
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We propose Discrepancy-based Method in hypervector space to reduce the gap between 
source vs. target domain, and fine-tune vs. original CLIP features.
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We propose Feature Augmentation in hypervector space by synthesizing target domain 
features from source domain features.
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Our features between source vs. target domain are more similar than the naïve fine-tuning
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Our t-SNE visualization also shows that our features between source vs. target domain are 
more similar than the naïve fine-tuning.

t-SNE (naive: source, target, ours: source, target)



Results

Dataset State-of-the-Art Ours

DomainNet LLaVO 64.7% 66.9%

VISDA-2017 VFR 91.7% 92.5%

Office-31 PMTrans 95.0% 95.5%

Office-Home LLaVO 91.6% 92.0%

We achieved the new state-of-the-art on 4 popular UDA datasets.
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