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Research Problem

1) Joint Generation: 2) Cross Generation:
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Multimodal Latent Generative Model 

shared representation among modalities 

generation model : modality-specific information 

prior: common information



Generation Model

assume:

modality-specific generator

generation model : modality-specific information 



Towards more Expressive Prior: Energy-based prior

• prior in existing work: less-informative unimodal distribution such as Gaussian, Laplacian

• EBM prior: expressive prior to capture complexity of multimodal shared information

• Exponential Tilting: exponentially tilt modification of base distribution via energy function

exponentially tilting

energy function base distributionpartition function



Learning: Maximum Likelihood Estimation

[1]

Mixture of Expert (MOE)

[1] Shi, Y et,.al Variational mixture-of-experts autoencoders for multi-modal deep generative models. NeurIPS2019

with sufficient data



Final Objective for Joint Learning



Learning Generator and Inference Model

Modality-Specific Reconstruction

Cross-Modality Generation

Regularization with EBM Prior



Learning EBM

MOE: variation inference Langevin dynamics

Sampling from EBM: Langevin dynamics

latent variable at  step size Gaussian noisesampled distribution

[1] Shi, Y et,.al Variational mixture-of-experts autoencoders for multi-modal deep generative models. NeurIPS2019

EBM prior: time step



Model Generalization
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modality-specific priorLaplacian prior

modality-specific priorEBM prior

MOE with modality prior 

EBM Prior: Generalized Version

EBM Prior: Base Version
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PolyMNIST : Coherence 
[3]

• Joint Coherence: generated samples modalities alignment and mutually consistent

• Cross Coherence: capacity of one modality infer other modalities

EBM Prior: Generalized VersionEBM Prior: Base Version



MMVAE+MMVAE
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PolyMNIST: Joint Generation Visual Result

EBM Prior: Base Version EBM Prior: Generalized Version



[1]Wah, C., ET AL. The caltech-ucsd birds-200-2011 dataset.2011

this bird is a black and are and and

a very red ..   

this bird has wings that are black and are 

very red beak

this small has has a are breast and white 

belly  

this small has a orange breast and has a 

black belly

CUB. : Markov Transition  
[1]



Questions please reach out to:

syuan14@stevens.edu
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