

Learning Multimodal Latent Generative Models with Energy-Based Prior

Shiyu Yuan^{^[1]}, Jiali Cui^[2], Hanao Li^[2], Tian Han^[2]

Department of Systems and Enterprises^[1] Department of Computer Science^[2]

Research Problem $\mathbf{X} = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}}$

1) Joint Generation:

 $p(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots \mathbf{x}^{(m)})$

 $\mathbf{x}^{(1)}$

2) Cross Generation: $p(\mathbf{x}^{(i)} \mid \mathbf{x}^{(j)})$ where $(i \neq j)$ $\mathbf{x}^{(1)}$ $\mathbf{x}^{(2)}$ 'a bird with a very long wingspan and a long pointed beak.' inference inference \mathbf{Z} \mathbf{Z} generate generate 'a bird with a very long wingspan and a long pointed beak.' $\mathbf{x}^{(2)}$ $\mathbf{x}^{(1)}$ $\mathbf{x}^{(2)} \longrightarrow \mathbf{x}^{(1)}$ $\mathbf{x}^{(1)} \longrightarrow \mathbf{x}^{(2)}$

Related Work

Variational Autoencoder-based^[1,2,3,4]

[1] Shi, Y et al. Variational mixture-of-experts autoencoders for multi-modal deep generative models. NeurIPS2019

- [2]Wu, M et al. Multimodal generative models for scalable weakly-supervised learning. NeurIPS2018
- [3] Sutter, T. M., et al. Generalized multimodal ELBO. ICLR2021
- [4] Palumbo, E., et al. MMVAE+: Enhancing the generative quality of multimodal VAEs without compromises. ICLR2023

[5]Bao, F., et al. One transformer fits all distributions in multi-modal diffusion at scale. ICML2023
[6]Hu, M., Zheng, et al. UniD3: unified discrete diffusion for simultaneous vision-language generation. ICLR2023
[7]Ramesh, A., et al. DALL-E 2

D

Multimodal Latent Generative Model

$$p_{\theta}(\mathbf{X}, \mathbf{z}) = p_{\beta_{(1)}}(\mathbf{x}^{(1)} | \mathbf{z}) p_{\beta_{(2)}}(\mathbf{x}^{(2)} | \mathbf{z}) \cdots p_{\beta_{(m)}}(\mathbf{x}^{(m)} | \mathbf{z}) p(\mathbf{z})$$

 $\mathbf{X} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\} \ m : \text{number of modalities}$ $\mathbf{Z} \qquad \qquad \text{shared representation among modalities}$ $p_{\beta_{(m)}}(\mathbf{x}^{(m)}|\mathbf{Z}) \qquad \text{generation model : modality-specific information}$ $p(\mathbf{Z}) \qquad \qquad \text{prior: common information}$

Generation Model

generation model : modality-specific information

$$p_{\theta}(\mathbf{X}, \mathbf{z}) = p_{\beta_{(1)}}(\mathbf{x}^{(1)} | \mathbf{z}) p_{\beta_{(2)}}(\mathbf{x}^{(2)} | \mathbf{z}) \cdots p_{\beta_{(m)}}(\mathbf{x}^{(m)} | \mathbf{z}) p(\mathbf{z})$$
assume:
$$\mathbf{x}^{(1)} \perp \mathbf{x}^{(2)} \perp \cdots \perp \mathbf{x}^{(m)} | \mathbf{z}$$

$$p_{\beta_{(m)}}(\mathbf{x}^{(m)}|\mathbf{z}) \sim \mathcal{N}(G_{\beta_{(m)}}(\mathbf{z}), I_{D^{(m)}})$$
$$\mathbf{x}^{(m)} = G_{\beta_{(m)}}(\mathbf{z}) + \epsilon \quad \text{where} \quad \epsilon \sim \mathcal{N}(0, I_{D^{(m)}})$$
$$\uparrow$$
modality-specific generator

Towards more Expressive Prior: Energy-based prior

$$p_{\theta}(\mathbf{X}, \mathbf{z}) = p_{\beta_{(1)}}(\mathbf{x}^{(1)} | \mathbf{z}) p_{\beta_{(2)}}(\mathbf{x}^{(2)} | \mathbf{z}) \cdots p_{\beta_{(m)}}(\mathbf{x}^{(m)} | \mathbf{z}) p_{\alpha}(\mathbf{z})$$

- prior in existing work: less-informative unimodal distribution such as Gaussian, Laplacian
- **EBM prior:** expressive prior to capture complexity of multimodal shared information
- Exponential Tilting: exponentially tilt modification of base distribution via energy function

$$p_{\alpha}(\mathbf{z}) = \frac{1}{\mathbb{Z}(\alpha)} \exp[-f_{\alpha}(\mathbf{z})] p_{0}(\mathbf{z})$$

$$p_{\alpha}(\mathbf{z}) = \frac{1}{\mathbb{Z}(\alpha)} \exp[-f_{\alpha}(\mathbf{z})] p_{0}(\mathbf{z})$$

$$p_{\alpha}(\mathbf{z}) = \frac{1}{\mathbb{Z}(\alpha)} \exp[-f_{\alpha}(\mathbf{z})] p_{0}(\mathbf{z})$$

Learning: Maximum Likelihood Estimation

$$\max_{\theta = \{\beta, \alpha\}} L(\theta) = \log \int_{\mathbf{z}} p_{\beta_{(1)}}(\mathbf{x}^{(1)} | \mathbf{z}) \cdots p_{\beta_{(m)}}(\mathbf{x}^{(m)} | \mathbf{z}) p_{\alpha}(\mathbf{z}) d\mathbf{z}$$

with sufficient data

$$\min_{\theta} \mathrm{KL}(p_{\mathrm{data}}(\mathbf{X}) \parallel p_{\theta}(\mathbf{X}))$$

 β : generator parameter α : EBM prior parameter

 ϕ : inference model part neter

$$\frac{\partial}{\partial \theta} L(\theta) = \mathbb{E}_{p_{\theta}(\mathbf{z}|\mathbf{X})} \begin{bmatrix} \frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{X}, \mathbf{z}) \end{bmatrix}$$
$$q_{\phi}(\mathbf{z}|\mathbf{X}) = \frac{1}{m} \sum_{m=1}^{M} q_{\phi_{(m)}} (\mathbf{z}|\mathbf{x}^{(m)})^{\text{\tiny{II}}} \text{ Mixture of Expert (MOE)}$$

Final Objective for Joint Learning

$$\min_{\substack{\theta \\ q_{\phi}(\mathbf{z}|\mathbf{X})}} \mathsf{KL}(p_{\mathsf{data}}(\mathbf{X}) \parallel p_{\theta}(\mathbf{X}))$$

$$\min_{\beta,\phi,\alpha} \operatorname{KL}(p_{\text{data}}(\mathbf{X})q_{\phi}(\mathbf{z}|\mathbf{X})||p_{\beta}(\mathbf{X}|\mathbf{z})p_{\alpha}(\mathbf{z}))$$

$$\lim_{\beta,\phi,\alpha} \frac{1}{m} \sum_{m=1}^{M} \mathbb{E}_{q_{\phi(m)}}(\mathbf{z}|\mathbf{x}^{(m)}) [\log \frac{p_{\beta,\alpha}(\mathbf{X},\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{X})}]$$

- β : generator parameter
- ϕ : inference model parameter
- $\alpha: \operatorname{EBM}$ prior parameter

Learning Generator and Inference Model

$$\frac{\partial}{\partial\beta,\phi}L(\beta,\phi,\alpha) = \frac{\partial}{\partial\beta,\phi}\frac{1}{m}\sum_{m=1}^{M} \left[\mathbb{E}_{q_{\phi(m)}(\mathbf{z}|\mathbf{x}^{(m)})}[\log p_{\beta(m)}(\mathbf{x}^{(m)}|\mathbf{z})]\right] \quad \leftarrow \text{ Modality-Specific Reconstruction}$$

$$\operatorname{Cross-Modality Generation} \quad \rightarrow \quad + \frac{\sum_{n=1,n\neq m}^{M} \mathbb{E}_{q_{\phi(m)}(\mathbf{z}|\mathbf{x}^{(m)})}[\log p_{\beta(n)}(\mathbf{x}^{(n)}|\mathbf{z})]}{\mathbb{E}_{q_{\phi(m)}(\mathbf{z}|\mathbf{x}^{(m)})}[\log \frac{p_{\alpha}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{X})}]}$$

$$\operatorname{Regularization with EBM Prior} \quad \rightarrow \quad + \frac{\mathbb{E}_{q_{\phi(m)}(\mathbf{z}|\mathbf{x}^{(m)})}[\log \frac{p_{\alpha}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{X})}]}{\mathbb{E}_{q_{\phi(m)}(\mathbf{z}|\mathbf{x}^{(m)})}[\log \frac{p_{\alpha}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{X})}]}$$

Learning EBM

$$\frac{\partial}{\partial \alpha} L(\beta, \phi, \alpha) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{X})} \begin{bmatrix} \frac{\partial}{\partial \alpha} f_{\alpha}(\mathbf{z}) \end{bmatrix} - \mathbb{E}_{p_{\alpha}(\mathbf{z})} \begin{bmatrix} \frac{\partial}{\partial \alpha} f_{\alpha}(\mathbf{z}) \end{bmatrix}$$
MOE: variation inference
Langevin dynamics

Sampling from EBM: Langevin dynamics

Model Generalization

EBM Prior: Base Version

$$p_{\theta}(\mathbf{X}, \mathbf{z}) = p_{\beta}(\mathbf{X}|\mathbf{z}) p_{\alpha}(\mathbf{z})$$

MOE with modality prior

EBM Prior: Generalized Version

$$p_{\theta}(\mathbf{X}, \mathbf{z}, \mathbf{W}) = p_{\beta}(\mathbf{X} | \mathbf{z}, \mathbf{W}) p_{\alpha}(\mathbf{z}) p_{0}(\mathbf{W})$$

EBM prior modality-specific prior

PolyMNIST^{¹³}: Coherence

- Joint Coherence: generated samples modalities alignment and mutually consistent
- **Cross Coherence**: capacity of one modality infer other modalities

EBM Prior: Base Version

EBM Prior: Generalized Version

Model	Joint Coherence 个	Cross Coherence↑
	PolyMNIST	
Ours	0.746	0.853
MMVAE _[1]	0.232	0.844

Model	Joint Coherence↑	Cross Coherence ↑
model	PolyMNIST	
Ours	0.878	0.897
MMVAE+[2]	0.344	0.869
MoPoE _[3]	0.141	0.720
MVTCAE[4]	0.003	0.591
mmJSD _[3]	0.060	0.778

[1] Shi, Y et al. Variational mixture-of-experts autoencoders for multi-modal deep generative models. NeurIPS2019

[2] Palumbo, E., et al. MMVAE+: Enhancing the generative quality of multimodal VAEs without compromises. ICLR2023
[3] Sutter, T. M., et al. Generalized multimodal ELBO. ICLR2021

[4]Hwang, H., et al. Multi-view representation learning via total correlation objective. NeurIPS2021

[5]Sutter, T., et al. Multimodal generative learning utilizing jensen-shannon-divergence. NeurIPS2020

PolyMNIST: Joint Generation Visual Result

EBM Prior: Base Version

MMVAE

EBM Prior: Generalized Version

MMVAE+

CUB. : Markov Transition

 $z \sim p_0(\mathbf{z})$

 a^2 a

this bird is a black and are and and a very red ..

this bird has wings that are black and are very red beak

this small has has a are breast and white belly

this small has a orange breast and has a black belly

 $z \sim p_{\alpha}(\mathbf{z})$

 $z \sim p_0(\mathbf{z})$

Questions please reach out to: syuan14@stevens.edu

