

Learned HDR Image Compression for Perceptually Optimal Storage and Display

Peibei Cao, Haoyu Chen, Jingzhe Ma, Yu-Chieh Yuan, Zhiyong Xie, Xin Xie, Haiqing Bai, and Kede Ma City University of Hong Kong & Xellar Biosystems

- Introduction
- ➤ Method
- > Experiments
- Summary

Introduction

Motivations

Increased information in HDR impedes storage and transmission

Directly displaying HDR images on LDR monitors causes significant information loss and quality degradation

Introduction

Contributions

Introduce a new HDR image compression problem

• Considering both storage and display constraints

- Adopt two perceptually-aligned image quality metrics as loss functions
 - Normalized Laplacian pyramid distance (NLPD) [Laparra et al., 2016]
 - HDR-IQA as LDR-IQA [Cao et al., 2024]

Traditional Methods

General diagram

Traditional Methods

General diagram

Traditional Methods

• Learnable compression and decompression process

- Learnable compression and decompression process
- Representation (feature maps) as side information

- Learnable compression and decompression process
- Representation (feature maps) as side information
- Side information independent of LDR images

Distortion function

NLPD for LDR images

Distortion function

- NLPD for LDR images
 - Models center-surround filtering and local gain control in the early visual system

Distortion function

- NLPD for LDR images
 - Models center-surround filtering and local gain control in the early visual system
 - Allows comparison of images with different dynamic ranges

Distortion function

- NLPD for LDR images
 - Models center-surround filtering and local gain control in the early visual system
 - Allows comparison of images with different dynamic ranges
 - Is effective in optimizing image rendering algorithms with various display constraints

Distortion function

HDR-IQA as LDR-IQA HDR images

Distortion function

HDR-IQA as LDR-IQA HDR images

Solve for $\hat{v}^{(k)}$ through Gradient-based Optimization (Optional)

Distortion function

HDR-IQA as LDR-IQA HDR images

Solve for $\hat{v}^{(k)}$ through Gradient-based Optimization (Optional)

Experiments

Datasets

- > We use panoramic HDR images from Poly Haven
 - 3, 880 images for training, and 780 images for testing

Competing Methods

> Nine HDR image compression methods for comparison

> LDR

JPEG-HDR (0.75 bpp)

Boschetti10 (0.77 bpp)

Mai11 (0.81 bpp)

OoDHDR-Codec (0.73 bpp)

TMO+WebP (0.75 bpp)

TMO+BPG (0.76 bpp)

≻ LDR

• Detail loss in under-exposure areas

Blocking artifacts

JPEG-HDR (0.75 bpp)

Boschetti10 (0.77 bpp)

Mai11 (0.81 bpp)

TMO+WebP (0.75 bpp)

TMO+BPG (0.76 bpp)

JPEG-XT (0.75 bpp)

OoDHDR-Codec (0.73 bpp)

Ours (0.38 bpp)

> LDR

JPEG-HDR (0.75 bpp)

Boschetti10 (0.77 bpp)

Mai11 (0.81 bpp)

OoDHDR-Codec (0.73 bpp)

TMO+WebP (0.75 bpp)

TMO+BPG (0.76 bpp)

► LDR

JPEG-HDR (0.75 bpp)

Boschetti10 (0.77 bpp)

Mai11 (0.81 bpp)

TMO+WebP (0.75 bpp)

OoDHDR-Codec (0.73 bpp)

TMO+BPG (0.76 bpp)

> LDR

JPEG-HDR (0.75 bpp)

Boschetti10 (0.77 bpp)

Mai11 (0.81 bpp)

OoDHDR-Codec (0.73 bpp)

TMO+WebP (0.75 bpp)

TMO+BPG (0.76 bpp)

> LDR

JPEG-HDR (0.75 bpp)


```
Boschetti10 (0.77 bpp)
```

- Detail loss
- Low color saturation •

Ours (0.38 bpp)

OoDHDR-Codec (0.73 bpp)

TMO+BPG (0.76 bpp)

> LDR

JPEG-HDR (0.75 bpp)

Boschetti10 (0.77 bpp)

Mai11 (0.81 bpp)

OoDHDR-Codec (0.73 bpp)

TMO+WebP (0.75 bpp)

TMO+BPG (0.76 bpp)

> LDR

JPEG-HDR (0.75 bpp)

Boschetti10 (0.77 bpp)

Mai11 (0.81 bpp)

TMO+WebP (0.75 bpp)

• Detail loss in low-exposed regions

TMO+BPG (0.76 bpp)

> LDR

JPEG-HDR (0.75 bpp)

Boschetti10 (0.77 bpp)

Mai11 (0.81 bpp)

OoDHDR-Codec (0.73 bpp)

TMO+WebP (0.75 bpp)

TMO+BPG (0.76 bpp)

> HDR

- Blocking
- Blurring

- Texture loss
- Color cast

≻ HDR

• Detail loss

≻ LDR

≻ LDR

• Higher TMQI and lower NLPD mean better quality

≻ LDR

- Higher TMQI and lower NLPD mean better quality
- Our method and its extension consistently deliver the best values

≻ HDR

• Our methods outperform other methods, particularly at relatively low bit rates

Summary

We have presented an end-to-end optimized HDR image compression system for perceptually optimal storage and display

The proposed method prioritizes perceptual optimization by adopting two perceptually aligned image distortion measures

Thanks for your attention!