
An Adaptive Screen-Space Meshing Approach
for Normal Integration

Moritz Heep & Eduard Zell
Moritz Heep

PhD Student

Niebuhrstraße 1a
53113 Bonn
+49 228/73-60834
moritzheep@gmx.de
moritzheep.github.io

University of Bonn

Motivation

We introduce an adaptive screen-space meshing approach to
reduce complexity before integration and give a full derivation
of the normal integration on general triangle meshes.

Fine details (in red) typically
only make up a fraction of
an object‘s surface.

After 3h After 5min

Pixel-Based Ours

Our adaptive triangle mesh leads to a much sparser representation and much faster
integration times while generating comparable results. The normal map was 64MP.

Increasing the resolution of the normal map improves the
accuracy of fine structures but increases computational
complexity. In smooth, featureless regions, this added
complexity yields little additional information.

By focusing on fine details and removing redundant
information, we can avoid the quadratic growth of variables
with increasing geometric resolution in pixel-based methods.

References
[1] X. Cao et al., ‘Normal Integration via Inverse Plane Fitting With Minimum Point-to-

Plane Distance’, CVPR, 2021.

[2] M. Dunyach et al., ‘Adaptive remeshing for real-time mesh deformation’,
Eurographics, 2013.

[3] M. Heep and E. Zell, ‘ShadowPatch: Shadow Based Segmentation for Reliable
Depth Discontinuities in Photometric Stereo’, Pacific Graphics, 2022

[4] M. Li et al., ‘Multi-view photometric stereo: A robust solution and benchmark
dataset for spatially varying isotropic materials’, TIP, 2020.

[5] W. Xie et al., ‘Surface-from-gradients: An approach based on discrete geometry
processing’, CVPR, 2014.

Acknowledgements
The "David Head" by 1d_inc and the "Football Medal2 - PhotoCatch" Moshe Caine were
licensed under CC BY 4.0.
This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany's Excellence Strategy, EXC-2070 - 390732324
(PhenoRob).

Curvature

Normals Curvature

Calculate curvature by solving the generalised Eigenproblem

1st fundamental form
𝐼𝑖𝑗 = 𝜕𝑖 Ԧ𝑥 ⋅ 𝜕𝑗 Ԧ𝑥

2nd fundamental form
𝐼𝐼𝑖𝑗 = 𝜕𝑖 Ԧ𝑥 ⋅ 𝜕𝑗𝑛

𝜅𝑖 ⋅ 𝐼 Ԧ𝑣𝑖 = 𝐼𝐼 Ԧ𝑣𝑖

We calculate surface gradients from 𝑛 ⋅ 𝜕𝑖 Ԧ𝑥 = 0 and use finite differences for 𝜕𝑖𝑛.

Adaptive Screen-Space Meshing

Initialize Mesh by covering each pixel with two triangles.

Split / Collapse Edges to make their length closer
to the optimal length

𝐿 =
6𝜀

𝜅
− 3𝜀2

that aims to keep the deviation between mesh and
underlying surface below a user threshold 𝜀.

𝜀

𝑟
𝐿

Since 𝑟 = 𝜅−1, curvature can be used to
estimate the deviation 𝜀 between the mesh and
the underyling surface [2].

Flip Edges that are locally Non-Delaunay.

Move Vertices to the weighted centroid of their star by solving

𝑓∈ℱ𝑣

𝐴𝑓

𝐿𝑓
2 ⋅ det 𝐼𝑓 ⋅ 𝐼𝑓 ⋅ 𝑢𝑣

𝑘+1
=

𝑓∈ℱ𝑣

𝐴𝑓

𝐿𝑓
2 ⋅ det 𝐼𝑓 ⋅ 𝐼𝑓 ⋅ Ԧ𝑐𝑓

Including the first fundamental form 𝐼𝑓 compensates for foreshortening.

Results
Our method is not bound to the image resolution. Instead, the
mesh resolution is controlled by a user parameter 𝜀.
Therefore, we conduct all experiments at three quality
settings: high (0.1 mm), medium (0.3 mm) and low (1 mm).

Compression
We investigated the compression rates of our method on the
DiLiGenT-MV dataset [4]. Even for the tightest error threshold,
we only need 6 to 18% of vertices compared to pixels.

2523 Vertices
@ 0.1 mm

1118 Vertices
@ 0.3 mm

529 Vertices
@ 1 mm

42512 Pixels
Normal Map

At higher resolutions, we achieve even more compression.
Experiments suggest that the number of vertices grows
significantly slower than the number of pixels.

The fewer variables also make our linear solver converge
significantly faster. The results suggest that our method has a
lower runtime complexity with increasing resolutions.

Benchmark Evaluation

[1] [5] [3]

[1, 2]

For the Combined column, we performed a pixel-wise integration [1] followed by conventional
remeshing [2]. For the Uniform column, we created meshes with uniform edge lengths that
match the number of vertices of their adaptive counterparts.

Given the high level of compression achieved by our method, it
is not surprising that pixel-based approaches perform slightly
better.

Mesh-Based Integration

Screen-Mesh 3D Surface

A unified treatment of the orthographic and perspective projection can be
achieved by using the functional

𝐸Int = න
Ω

𝑛 ⋅ Ԧ𝑟 𝜕𝑢𝑧 + 𝑛𝑥
2 + 𝑛 ⋅ Ԧ𝑟 𝜕𝑣𝑧 + 𝑛𝑦

2
d𝑢 d𝑣

We derive a discretized version of this energy for triangle meshes. As in the pixel
case, integration is performed by solving a linear system but with much fewer
variables.

camera ray (log) depth

	Folie 1

