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Method

Goal: Fast and precise image editing with region-based user inputs. Editing Pipeline Effectiveness of region inputs Effectiveness of multi-step copy-paste
(1) Region-based Input: User selects handle and target regions for editing. - Randomly sample different percentages «  Copy-paste the image's latent
® Handle ® Target Point-based | Handle ® Target Region-based (2) Multi-step Copy-Paste: Repetitively copy latent representations from handle to target of transformed points from each representation across either multiple
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Key Contributions UserBait | | Percentage of Points Used
(1) Region-based image editing method for better user intention alignment. * Region-based inputs lead to superior * Multi-step copy-paste provides guidance
. . . . .. o . : : results by providing stronger constraints at smaller timesteps, preserving image
(2) Gradient-free, single-iteration editing pipeline for fast inference. Dense mapping between user-defined regions Y PIOVICING & Fideli b, P 8 1mas
than sparse points. idelity.

(3) Extended datasets with region-based instructions for benchmarking. (1) Flexible Input Methods: Support both polygon vertices and brush strokes for

region selection. Qualitative Results
Motivation (2) Mapping Technique:

Why Move Beyond Point-Based Image Editing? . For polygons: Apply affine or perspective transformations. RegionDrag achieves targeted modifications while maintaining image coherence.

For brush strokes: Apply horizontal and vertical scaling to map points

(1) Sparse point inputs often lead to ambiguous interpretations of user intentions.

Point Input 4 DragDiff. SDE-Drag  DiffEditor A

- Models must infer global image changes from limited point movements. . . 2 o = "
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(3) Region pairs provide richer context and denser mapping compared to sparse point pairs.

New benchmarks for region-based Mean Distance (¥100) & LPIPS (%100)
editing evaluation

Region Input
between handle and target regions. —

(2) Point-based methods are slow due to iterative editing and expensive LoRA training.

Each region corresponds to a large number of points after dense mapping.

DragB enc.h'.s [1] and DragBench-D Method DragBench-S(R) DragBench-D(R)

( \ o - —— \ orin [2] are .eX1st1n.g benchmarks for Time () MD (}) LPIPS ({) MD (}) LPIPS ({)
evaluating point-drag methods. We SDE-Drag 126.1 7.5 12.4 8.1 14.9
User’s Intention modify these benchmarks to use regions DragDiffusion ifeT T 18.0 6.7 11.5
voxtend bird's beak" r SR \ instead of points to reflect user DiffEditor 43.1 23.6 17.6 22.1 10.9

Ours 1.5 6.4 9.9 6.6 9.2

intentions, creating DragBench-SR and
DragBench-DR (where R stands for
'Region').
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Frequency distribution of
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