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Background: Implicit Neural Representations

• Parametrize a signal as a continuous function

➢ Input: coordinate

➢ Function: neural network

➢ Output: RGB values, density 

• Advantages:

➢ Arbitrary Resolution → signal super-resolution

➢ Memory efficient → signal compression

➢ Capture, retain and infer signal details → signal inpainting, deblurring, denoising, ….  

image video 3D object

[1] Vincent Sitzmann, et al. Implicit Neural Representations with Periodic Activation Functions, NeurIPS 2020.

[2] Hao Chen, et al, NeRV: Neural Representations for Videos, NeurIPS 2021.
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Background: Implicit Neural Representations

• Two types in image INRs:

➢ MLP-based INR: 
 Long training times
 Slow decoding speed
 High GPU memory consumption  

➢ Feature grid-based INR:

➢ Fast training and inference

➢ Higher GPU memory consumption

Low-end devices with limited memory: unfriendly!

[3] Thomas Müller et al. “Instant Neural Graphics Primitives with a Multiresolution Hash Encoding”, SIGGRAPH 2022.
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Motivation: Gaussian Splatting

• The characteristics of advanced neural image representation:

➢ Efficient training

➢ Fast decoding 

➢ Friendly GPU memory usage

• Gaussian Splatting in 3D scene reconstruction: 

➢ Explicit 3D Gaussian representations and differentiable tile-based rasterization, 

➢ High visual quality with competitive training times, 

➢ Real-time rendering capabilities

[4] Bernhard Kerbl et al. “3D Gaussian Splatting for Real-Time Radiance Field Rendering”,  ACM Transactions on Graphics 2023.
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Challenges

• Non-trivial to directly adapt 3D GS for efficient single image representation

➢ 3D Gaussian Representation: 

 Each 3D Gaussian has 59 parameters

 Thousands of 3D Gaussians are required for representing a single image

 Increases the storage and communication demands
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Challenges

• Non-trivial to directly adapt 3D GS for efficient single image representation

➢ Alpha Blending-based Rasterization:

 Requires pre-sorted Gaussians based on depth information

◆ Single natural images: detailed camera parameters are often not known

◆ Non-natural images: they are not captured by cameras

◆ w/o depth information → Gaussian sorting is impaired

 Skips remaining Gaussians once the accumulated opacity surpasses the threshold

◆ Underutilization of Gaussians

◆ Require more Gaussians for high-quality rendering
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GaussianImage: 2D Gaussian Formation

• GaussianImage: groundbreaking image representation paradigm 

➢ 2D Gaussian Formation:

 Each 2D Gaussian has 4 attributes (9 parameters in total): 

◆ Position: 𝜇 ∈ ℝ2

◆ Anisotropic covariance: 𝜮 = 𝑳𝑳𝑇  𝑜𝑟 𝜮 = 𝑹𝑺𝑺𝑇𝑹𝑇

◆ Color coefficients : 𝑐 ∈ ℝ3

◆ Opacity : o ∈ ℝ
 A 6.5× compression over 3D Gaussians 
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GaussianImage: Rasterization

• GaussianImage: groundbreaking image representation paradigm 

➢ Accumulated Blending-based Rasterization: 

 No viewpoint influence → Deterministic order → Merge 𝑇𝑛 into 𝑜𝑛

 Benefits:

◆ Fully utilize the information of all Gaussian points covering the current pixel 

◆ Avoid the tedious calculation of accumulated transparency to accelerate training 

and inference

◆ Allow us to combine color coefficients and opacity into a singular set of weighted 

color coefficients → 8 parameters and a 7.375× compression over 3D Gaussians 
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Application: Image Compression

• Ultra-fast Image Codec: Attribute Quantization-aware Fine-tuning

➢ Position: FP16

➢ Covariance: 6-bit quantization

መ𝑙𝑖
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➢ Color: residual vector quantization  

 Codebook size B: 8

 Number of quantization stages M: 2
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Application: Image Compression

• Best GaussianImage-based Codec: Partial Bits-back Coding [5]

➢ Encoding ordered data brings additional storage overhead

➢ An unordered set with 𝑁 elements has 𝑁! equivariant

➢ Bits-back coding can save a bitrate of 𝑙𝑜𝑔𝑁! − 𝑙𝑜𝑔𝑁
➢ Practical operation: 

 Encode the initial 𝐾 Gaussians by vanilla entropy coding

 Encode the subsequent 𝑁 − 𝐾 Gaussians by bits-back coding

 Find the optimal K: Let 𝑅𝑘 denotes the bitrate of 𝑘-th Gaussian, the final bitrate saving 

can be formalized as: 

log 𝑁 − 𝐾∗ ! − log 𝑁 − 𝐾∗ ,

𝑤ℎ𝑒𝑟𝑒 𝐾∗ = inf 𝐾 , 𝑠. 𝑡. ෍

𝑘=1

𝐾

𝑅𝑘 − log 𝑁 − 𝐾∗ ! ≥ 0 .

[5] Julius Kunze et al. “Entropy coding of unordered data structures”,  ICLR 2024.
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Comprehensive Evaluation: Image Representation
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Comprehensive Evaluation: Image Representation
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Comprehensive Evaluation: Image Compression
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Comprehensive Evaluation: Image Compression

14/20



Comprehensive Evaluation: Image Compression
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Image Representation: Ablation Study
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Image Compression: Ablation Study
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Conclusion

• We present a pioneering paradigm of image representation and compression by 2D Gaussian 

Splatting. With compact 2D Gaussian representation and a novel accumulated blending-based 

rasterization method, our approach achieves high representation performance with short training 

duration, minimal GPU memory overhead and remarkably, 2000 FPS rendering speed.  

• We develop a ultra-fast neural image codec using vector quantization. It achieves competitive 

compression performance with COIN and COIN++, while providing around 2000 FPS decoding 

speed. Furthermore, a partial bits-back coding technique is optionally used to reduce the bitrate.

Source Code Project Page
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Future Direction

• Various Exciting Potential Research Directions:

➢ High-level vision tasks: Adopt the 2D Gaussian as a new tokenizer (Varying size, unlimited 

by image resolution, carry position information) 

 How to extract semantic Gaussian?

➢ Basic Generative model: Build a brand-new asymmetric generative paradigm 

 GM generates a set of Gaussian parameters to render an image: High encoding 

complexity but very low decoding complexity

➢ Low-level vision tasks: super-resolution, deblurring, …

➢ Text-guided 2D Gaussian Editing
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Thank you!
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