GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting

Xinjie Zhang, Xingtong Ge, Tongda Xu, Dailan He, Yan Wang, Hongwei Qin, Guo Lu, Jing Geng, Jun Zhang

Background: Implicit Neural Representations

- Parametrize a signal as a continuous function
 - Input: coordinate
 - Function: neural network
 - Output: RGB values, density
- Advantages:

JNIVERSITY OF SCIENCE

AND TECHNOLOGY

- > Arbitrary Resolution \rightarrow signal super-resolution
- > Memory efficient \rightarrow signal compression
- \succ Capture, retain and infer signal details \rightarrow signal inpainting, deblurring, denoising,

Background: Implicit Neural Representations

- Two types in image INRs:
 - MLP-based INR:
 - Long training times
 - □ Slow decoding speed
 - □ High GPU memory consumption
 - Feature grid-based INR:
 - Fast training and inference
 - Higher GPU memory consumption

Low-end devices with limited memory: unfriendly!

Motivation: Gaussian Splatting

- The characteristics of advanced neural image representation:
 - Efficient training
 - Fast decoding

AND TECHNOLOGY

- Friendly GPU memory usage
- Gaussian Splatting in 3D scene reconstruction:
 - > Explicit 3D Gaussian representations and differentiable tile-based rasterization,
 - High visual quality with competitive training times,
 - Real-time rendering capabilities

Challenges

- Non-trivial to directly adapt 3D GS for efficient single image representation
 - ➢ 3D Gaussian Representation:
 - Each 3D Gaussian has 59 parameters
 - □ Thousands of 3D Gaussians are required for representing a single image
 - Increases the storage and communication demands

Challenges

- Non-trivial to directly adapt 3D GS for efficient single image representation
 - > Alpha Blending-based Rasterization:
 - Requires pre-sorted Gaussians based on depth information
 - Single natural images: detailed camera parameters are often not known
 - Non-natural images: they are not captured by cameras
 - \bullet w/o depth information \rightarrow Gaussian sorting is impaired
 - □ Skips remaining Gaussians once the accumulated opacity surpasses the threshold
 - Underutilization of Gaussians
 - Require more Gaussians for high-quality rendering

$$C_i = \sum_{n \in \mathcal{N}} \boldsymbol{c}_n \alpha_n T_n, \qquad T_n = \prod_{m=1}^{n-1} (1 - \alpha_m), \qquad \alpha_n = o_n \exp(-\sigma_n), \qquad \sigma_n = \frac{1}{2} \boldsymbol{d}_n^T \boldsymbol{\Sigma}^{-1} \boldsymbol{d}_n$$

GaussianImage: 2D Gaussian Formation

- GaussianImage: groundbreaking image representation paradigm
 - > 2D Gaussian Formation:
 - **D** Each 2D Gaussian has 4 attributes (9 parameters in total):
 - Position: $\mu \in \mathbb{R}^2$
 - Anisotropic covariance: $\Sigma = LL^T$ or $\Sigma = RSS^TR^T$
 - Color coefficients : $c \in \mathbb{R}^3$
 - Opacity : $o \in \mathbb{R}$
 - \blacksquare A 6.5× compression over 3D Gaussians

 $oldsymbol{L} = egin{bmatrix} l_1 & 0 \ l_2 & l_3 \end{bmatrix}$

 $oldsymbol{R} = egin{bmatrix} \cos(heta) & -\sin(heta) \ \sin(heta) & \cos(heta) \end{bmatrix}, \quad oldsymbol{S} = egin{bmatrix} s_1 & 0 \ 0 & s_2 \end{bmatrix}$

GaussianImage: Rasterization

- GaussianImage: groundbreaking image representation paradigm
 - Accumulated Blending-based Rasterization:
 - **D** No viewpoint influence \rightarrow Deterministic order \rightarrow Merge T_n into o_n
 - **D** Benefits:
 - ◆ Fully utilize the information of all Gaussian points covering the current pixel
 - Avoid the tedious calculation of accumulated transparency to accelerate training and inference
 - Allow us to combine color coefficients and opacity into a singular set of weighted color coefficients → 8 parameters and a 7.375× compression over 3D Gaussians

$$C_{i} = \sum_{n \in \mathcal{N}} c_{n} \alpha_{n} T_{n}, \qquad T_{n} = \prod_{m=1}^{n-1} (1 - \alpha_{m}), \qquad \alpha_{n} = o_{n} \exp(-\sigma_{n}), \qquad \sigma_{n} = \frac{1}{2} d_{n}^{T} \Sigma^{-1} d_{n}$$
THE HONG KONG
UNIVERSITY OF SCIENCE
$$C_{i} = \sum_{n \in \mathcal{N}} c_{n} \alpha_{n} = \sum_{n \in \mathcal{N}} c_{n} o_{n} \exp(-\sigma_{n}) \longrightarrow C_{i} = \sum_{n \in \mathcal{N}} c'_{n} \exp(-\sigma_{n})$$

Application: Image Compression

- Ultra-fast Image Codec: Attribute Quantization-aware Fine-tuning
 - Position: FP16
 - Covariance: 6-bit quantization

$$\hat{l}_{i}^{n} = \left[clamp(\frac{l_{i}^{n} - \beta_{i}}{\gamma_{i}}, 0, 2^{b} - 1) \right], \bar{l}_{i}^{n} = \hat{l}_{i}^{n} \times \gamma_{i} + \beta_{i}$$

- Color: residual vector quantization
 - Codebook size B: 8
 - **D** Number of quantization stages M: 2

Application: Image Compression

- Best GaussianImage-based Codec: Partial Bits-back Coding [5]
 - Encoding ordered data brings additional storage overhead
 - > An unordered set with *N* elements has *N*! equivariant
 - > Bits-back coding can save a bitrate of logN! logN
 - Practical operation:
 - □ Encode the initial *K* Gaussians by vanilla entropy coding
 - **\Box** Encode the subsequent *N K* Gaussians by bits-back coding
 - □ Find the optimal K: Let R_k denotes the bitrate of k-th Gaussian, the final bitrate saving can be formalized as:

$$\log(N - K^*)! - \log(N - K^*),$$

where $K^* = \inf K$, s.t. $\sum_{k=1}^{K} R_k - \log(N - K^*)! \ge 0.$

Comprehensive Evaluation: Image Representation

Table 1: Quantitative comparison with various baselines in PSNR, MS-SSIM, training time, rendering speed, GPU memory usage and parameter size.

Methods	$ \mathrm{PSNR}\uparrow$	$\text{MS-SSIM} \uparrow$	Training Time(s) \downarrow	$\mathrm{FPS}\uparrow$	GPU Mem(MiB) \downarrow	$\mathrm{Params}(\mathrm{K}){\downarrow}$	
WIRE [53]	41.47	0.9939	14338.78	11.14	2619	136.74	
SIREN $[54]$	40.83	0.9960	6582.36	29.15	1809	272.70	
I-NGP [48]	43.88	0.9976	490.61	1296.82	1525	300.09	
NeuRBF [18]	43.78	0.9964	991.83	663.01	2091	337.29	
3D GS [35]	43.69	0.9991	339.78	859.44	557	3540.00	
Ours	44.08	0.9985	106.59	2092.17	419	560.00	
(b) DIV2K dataset							

(a) Kodak dataset

Methods	$ PSNR\uparrow$	$\text{MS-SSIM} \uparrow$	Training Time(s) \downarrow	$\mathrm{FPS}\uparrow$	GPU $Mem(MiB)\downarrow$	$\operatorname{Params}(K) \downarrow$
WIRE [53]	35.64	0.9511	25684.23	14.25	2619	136.74
SIREN [54]	39.08	0.9958	15125.11	11.07	2053	483.60
I-NGP [48]	37.06	0.9950	676.29	1331.54	1906	525.40
NeuRBF [18]	38.60	0.9913	1715.44	706.40	2893	383.65
3D GS [35]	39.36	0.9979	481.27	640.33	709	4130.00
Ours	39.53	0.9975	120.76	1737.60	439	560.00

Comprehensive Evaluation: Image Representation

Comprehensive Evaluation: Image Compression

Comprehensive Evaluation: Image Compression

THE HONG KONG UNIVERSITY OF SCIE AND TECHNOLOGY

14/20

Comprehensive Evaluation: Image Compression

Table 2: Computational complexity of traditional and learning-based image codecs

 on DIV2K Dataset at low and high Bpp.

Methods	Bpp↓	$ $ PSNR \uparrow	$\mathrm{MS}\text{-}\mathrm{SSIM}\uparrow$	Encoding FPS	$ $ Decoding FPS \uparrow
JPEG [61]	$\left 0.3197 / 0.5638 \right $	$\left 25.2920/28.4299 \right $	0.9020/0.9559	608.61/557.35	614.68/545.59
JPEG2000 [55]	0.2394/0.5993	27.2792/30.9294	0.9305/0.9663	3.46/3.40	4.32/3.93
Ballé17 [5]	0.2271/0.4987	27.7168/30.7759	0.9508/0.9775	21.23/16.53	18.83/17.87
Ballé18 [6]	0.2533/0.5415	28.7548/32.2351	0.9584/0.9816	16.53/13.56	15.87/15.20
COIN [23]	0.3419/0.6780	25.8012/27.6126	0.8905/0.9306	$5.30e^{-4}/3.51e^{-4}$	166.31/93.74
Ours	0.3221/0.6417	25.6631/27.5656	0.9154/0.9483	$ 4.11e^{-3}/4.73e^{-3} $	1970.76/1980.54

AND TECHNOLOGY

Image Representation: Ablation Study

Table 3: Ablation study of image representation on Kodak dataset with 30000 Gaussian points over 50000 training steps. AR means accumulated blending-based rasterization, M indicates merging color coefficients c and opacity o. RS denotes decomposing the covariance matrix into rotation and scaling matrices. The final row in each subclass represents our default solution.

Methods	$ PSNR\uparrow$	$\text{MS-SSIM}\uparrow$	Training Time(s) \downarrow	$\mathrm{FPS}\uparrow$	$Params(K)\downarrow$
$\overline{3D \text{ GS } (w/ \text{ L1+SSIM})}$	37.75	0.9961	285.26	1067	1770
3D GS (w/L2)	37.41	0.9947	197.90	1190	1770
Ours (w/L2+w/o AR+w/o M)	37.89	0.9961	104.76	2340	270
Ours (w/ L2+w/ AR+w/o M)	38.69	0.9963	98.54	2555	270
Ours(w/ L2+w/ AR+w/ M)	38.57	0.9961	91.06	2565	240
Ours (w/L1)	36.46	0.9937	92.68	2438	240
Ours (w/ SSIM)	35.65	0.9952	183.20	2515	240
Ours (w/L1+SSIM)	36.57	0.9945	188.22	2576	240
Ours (w/L2+SSIM)	34.73	0.9932	189.17	2481	240
Ours (w/ L2)	38.57	0.9961	91.06	2565	240
Ours-RS	38.83	0.9964	98.55	2321	240
Ours-Cholesky	38.57	0.9961	91.06	2565	240

Image Compression: Ablation Study

Table 4: Ablation study of quantization schemes on Kodak dataset. The first row denotes our final solution and is set as the anchor.

Variants	BD-PSNR (dB) \uparrow BD-rate (%) \downarrow	BD-MS-SSIM ↑	BD-rate (%) \downarrow
$egin{aligned} & ext{Ours} \ & (ext{V1}) ext{ w/o } \mathcal{L}_c + ext{w/ RVQ} + 6 ext{bit} \ & (ext{V2}) ext{ w/o } \mathcal{L}_c + ext{w/o } ext{RVQ} + 6 ext{bit} \ & (ext{V3}) ext{ w/o } \mathcal{L}_c + ext{w/o } ext{RVQ} + 8 ext{bit} \end{aligned}$	$ \begin{array}{c c} 0 \\ -3.145 \\ -0.159 \\ -0.195 \end{array} $	$\begin{array}{c} 0 \\ 333.16 \\ 7.02 \\ 11.69 \end{array}$	$ \begin{array}{c c} 0 \\ -0.0824 \\ -0.0030 \\ -0.0127 \end{array} $	$\begin{array}{c} 0 \\ 337.84 \\ 6.14 \\ 62.77 \end{array}$
Kodak Dataset		DIV2K Datase	t	

Conclusion

- We present a pioneering paradigm of image representation and compression by 2D Gaussian Splatting. With compact 2D Gaussian representation and a novel accumulated blending-based rasterization method, our approach achieves high representation performance with short training duration, minimal GPU memory overhead and remarkably, 2000 FPS rendering speed.
- We develop a ultra-fast neural image codec using vector quantization. It achieves competitive compression performance with COIN and COIN++, while providing around 2000 FPS decoding speed. Furthermore, a partial bits-back coding technique is optionally used to reduce the bitrate.

Source Code

Project Page

18/20

Future Direction

- Various Exciting Potential Research Directions:
 - High-level vision tasks: Adopt the 2D Gaussian as a new tokenizer (Varying size, unlimited by image resolution, carry position information)
 How to extract semantic Gaussian?
 - Basic Generative model: Build a brand-new asymmetric generative paradigm
 GM generates a set of Gaussian parameters to render an image: High encoding complexity but very low decoding complexity
 - Low-level vision tasks: super-resolution, deblurring, …
 - Text-guided 2D Gaussian Editing

Thank you!

