GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting

Xinjie Zhang, Xingtong Ge, Tongda Xu, Dailan He, Yan Wang, Hongwei Qin, Guo Lu, Jing Geng, Jun Zhang

Background: Implicit Neural Representations

- Parametrize a signal as a continuous function
	- ➢ Input: coordinate
	- ➢ Function: neural network
	- ➢ Output: RGB values, density
- Advantages:

JNIVERSITY OF SCIENCE

AND TECHNOLOGY

- \triangleright Arbitrary Resolution \rightarrow signal super-resolution
- \triangleright Memory efficient \rightarrow signal compression
- \triangleright Capture, retain and infer signal details \rightarrow signal inpainting, deblurring, denoising, ...

Background: Implicit Neural Representations

- Two types in image INRs:
	- ➢ MLP-based INR:
		- \Box Long training times
		- \Box Slow decoding speed
		- \Box High GPU memory consumption
	- ➢ Feature grid-based INR:
		- \triangleright Fast training and inference
		- ➢ Higher GPU memory consumption

Low-end devices with limited memory: unfriendly!

Motivation: Gaussian Splatting

- The characteristics of advanced neural image representation:
	- \triangleright Efficient training
	- \triangleright Fast decoding

AND TECHNOLOGY

- ➢ Friendly GPU memory usage
- Gaussian Splatting in 3D scene reconstruction:
	- ➢ Explicit 3D Gaussian representations and differentiable tile-based rasterization,
	- \triangleright High visual quality with competitive training times,
	- \triangleright Real-time rendering capabilities

[4] Bernhard Kerbl et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering", ACM Transactions on Graphics 2023.

Challenges

- Non-trivial to directly adapt 3D GS for efficient single image representation
	- ➢ 3D Gaussian Representation:
		- □ Each 3D Gaussian has 59 parameters
		- □ Thousands of 3D Gaussians are required for representing a single image
		- \Box Increases the storage and communication demands

Challenges

- Non-trivial to directly adapt 3D GS for efficient single image representation
	- ➢ Alpha Blending-based Rasterization:
		- □ Requires pre-sorted Gaussians based on depth information
			- ◆ Single natural images: detailed camera parameters are often not known
			- ◆ Non-natural images: they are not captured by cameras
			- \blacklozenge w/o depth information \rightarrow Gaussian sorting is impaired
		- Skips remaining Gaussians once the accumulated opacity surpasses the threshold
			- ◆ Underutilization of Gaussians
			- ◆ Require more Gaussians for high-quality rendering

$$
\mathcal{C}_i = \sum_{n \in \mathcal{N}} c_n \alpha_n T_n, \qquad T_n = \prod_{m=1}^{n-1} (1 - \alpha_m), \qquad \alpha_n = o_n \exp(-\sigma_n), \qquad \sigma_n = \frac{1}{2} \mathbf{d}_n^T \mathbf{\Sigma}^{-1} \mathbf{d}_n
$$

GaussianImage: 2D Gaussian Formation

- GaussianImage: groundbreaking image representation paradigm
	- ➢ 2D Gaussian Formation:

JNIVERSITY OF SCIENCE

AND TECHNOLOGY

- Each 2D Gaussian has 4 attributes (9 parameters in total):
	- \blacklozenge Position: $\mu \in \mathbb{R}^2$
	- Anisotropic covariance: $\boldsymbol{\Sigma} = \boldsymbol{L}\boldsymbol{L}^T$ or $\boldsymbol{\Sigma} = \boldsymbol{R}\boldsymbol{S}\boldsymbol{S}^T\boldsymbol{R}^T$
	- \blacklozenge Color coefficients : $c \in \mathbb{R}^3$
	- ◆ Opacity : o ∈ ℝ
- \Box A 6.5 \times compression over 3D Gaussians

 $\boldsymbol{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad \boldsymbol{S} = \begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix}$

 $\bm{L} = \begin{bmatrix} l_1 \; 0 \\ l_2 \; l_3 \end{bmatrix}$

7/20

GaussianImage: Rasterization

- GaussianImage: groundbreaking image representation paradigm
	- ➢ Accumulated Blending-based Rasterization:
		- **□** No viewpoint influence \rightarrow Deterministic order \rightarrow Merge T_n into o_n
		- **D** Benefits:
			- ◆ Fully utilize the information of all Gaussian points covering the current pixel
			- ◆ Avoid the tedious calculation of accumulated transparency to accelerate training and inference
			- ◆ Allow us to combine color coefficients and opacity into a singular set of weighted color coefficients \rightarrow 8 parameters and a 7.375 \times compression over 3D Gaussians

$$
C_i = \sum_{n \in \mathcal{N}} c_n \alpha_n T_n, \qquad T_n = \prod_{m=1}^{n-1} (1 - \alpha_m), \qquad \alpha_n = o_n \exp(-\sigma_n), \qquad \sigma_n = \frac{1}{2} d_n^T \Sigma^{-1} d_n
$$

$$
C_i = \sum_{n \in \mathcal{N}} c_n \alpha_n = \sum_{n \in \mathcal{N}} c_n o_n \exp(-\sigma_n) \longrightarrow C_i = \sum_{n \in \mathcal{N}} c'_n \exp(-\sigma_n)
$$

Application: Image Compression

- Ultra-fast Image Codec: Attribute Quantization-aware Fine-tuning
	- ➢ Position: FP16
	- ➢ Covariance: 6-bit quantization

$$
\hat{l}_i^n = \left[clamp(\frac{l_i^n - \beta_i}{\gamma_i}, 0, 2^b - 1)\right], \bar{l}_i^n = \hat{l}_i^n \times \gamma_i + \beta_i
$$

- \triangleright Color: residual vector quantization
	- Codebook size *B*: 8
	- Number of quantization stages *M*: 2

Application: Image Compression

- Best GaussianImage-based Codec: Partial Bits-back Coding [5]
	- ➢ Encoding ordered data brings additional storage overhead
	- \triangleright An unordered set with N elements has N! equivariant
	- \triangleright Bits-back coding can save a bitrate of $log N! log N$
	- ➢ Practical operation:
		- \Box Encode the initial K Gaussians by vanilla entropy coding
		- \blacksquare Encode the subsequent $N K$ Gaussians by bits-back coding
		- \Box Find the optimal K: Let R_k denotes the bitrate of k-th Gaussian, the final bitrate saving can be formalized as:

$$
\log(N - K^*) ! - \log(N - K^*),
$$

where $K^* = \inf K$, s. t.
$$
\sum_{k=1}^K R_k - \log(N - K^*) ! \ge 0.
$$

Comprehensive Evaluation: Image Representation

Table 1: Quantitative comparison with various baselines in PSNR, MS-SSIM, training time, rendering speed, GPU memory usage and parameter size.

Methods	PSNR ^{\uparrow}		$MS-SSIM\uparrow$ Training Time(s)		FPS \uparrow GPU Mem(MiB) \downarrow Params(K) \downarrow	
WIRE [53]	41.47	0.9939	14338.78	11.14	2619	136.74
SIREN $[54]$	40.83	0.9960	6582.36	29.15	1809	272.70
I-NGP $[48]$	43.88	0.9976	490.61	1296.82	1525	300.09
NeuRBF $[18]$	43.78	0.9964	991.83	663.01	2091	337.29
3D GS [35]	43.69	0.9991	339.78	859.44	557	3540.00
Ours	44.08	0.9985	106.59	2092.17	419	560.00
(b) DIV2K dataset						

(a) Kodak dataset

Comprehensive Evaluation: Image Representation

Comprehensive Evaluation: Image Compression

Comprehensive Evaluation: Image Compression

14/20

Comprehensive Evaluation: Image Compression

Table 2: Computational complexity of traditional and learning-based image codecs on DIV2K Dataset at low and high Bpp.

AND TECHNOLOGY

Image Representation: Ablation Study

Table 3: Ablation study of image representation on Kodak dataset with 30000 Gaussian points over 50000 training steps. AR means accumulated blending-based rasterization, M indicates merging color coefficients c and opacity o . RS denotes decomposing the covariance matrix into rotation and scaling matrices. The final row in each subclass represents our default solution.

Image Compression: Ablation Study

Table 4: Ablation study of quantization schemes on Kodak dataset. The first row denotes our final solution and is set as the anchor.

17/20

Conclusion

THE HONG KONG

AND TECHNOLOGY

INIVERSITY OF SCIENCE

- We present a pioneering paradigm of image representation and compression by 2D Gaussian Splatting. With compact 2D Gaussian representation and a novel accumulated blending-based rasterization method, our approach achieves high representation performance with short training duration, minimal GPU memory overhead and remarkably, 2000 FPS rendering speed.
- We develop a ultra-fast neural image codec using vector quantization. It achieves competitive compression performance with COIN and COIN++, while providing around 2000 FPS decoding speed. Furthermore, a partial bits-back coding technique is optionally used to reduce the bitrate.

Future Direction

- Various Exciting Potential Research Directions:
	- ➢ High-level vision tasks: Adopt the 2D Gaussian as a new tokenizer (Varying size, unlimited by image resolution, carry position information) \Box How to extract semantic Gaussian?
	- ➢ Basic Generative model: Build a brand-new asymmetric generative paradigm GM generates a set of Gaussian parameters to render an image: High encoding complexity but very low decoding complexity
	- ➢ Low-level vision tasks: super-resolution, deblurring, …
	- ➢ Text-guided 2D Gaussian Editing

Thank you!

