

WiMANS: A Benchmark Dataset for WiFi-based Multi-user Activity Sensing

Shuokang Huang Kaihan Li Di You Yichong Chen Arvin Lin Siying Liu Xiaohui Li Julie A. McCann Imperial College London

EUROPEAN CONFERENCE ON COMPUTER VISION

MILAN O

IMPERIAL

WiMANS, *the first dataset* for multi-user sensing based on WiFi. 9.4 hours of dual-band WiFi Channel State Information (CSI). Synchronized videos. Simultaneous activities of 0-5 users. The first benchmarks for WiFi-based multi-user activity sensing.

EUROPEAN CONFERENCE ON COMPUTER VISION

MILAN O

Background

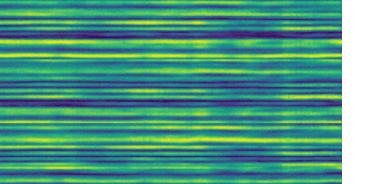
- WiFi-based Human Sensing
 - Non-intrusive
 - Environmental robust
 - Device-free
- Sensing Tasks and Models
 - Human identification: MLPs, LSTM, CNNs, CNN-LSTM hybrids
 - Human localization: Naive Bayes, Auto-encoders, LSTM, CNNs
 - Human activity recognition: MLPs, LSTM, CNNs, CNN-LSTM hybrids, GANs, attention-based bidirectional LSTM, Transformers

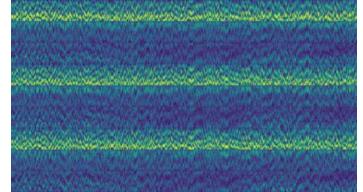
Drawbacks

- Single-user Limitation
 - A lack of public datasets that enable WiFi-based multi-user sensing
- Insufficient Modalities and Annotations
- Lack of Comprehensive Benchmarks

Challenges

• Comparison of Existing Datasets


Dataset	# of Users	$\# \mathbf{of}$	# of	# of	Sample	WiFi Band	Video	Annotations		
Dataset	per Sample	Samples	Activities	Channels	Rate (Hz)	(GHz)	Data	Idt .	Loc.	Act.
Yousefi et al. [73]	1	557	7	90	1000	5	-	-	-	~
SignFi [39]	1	14280	276	90	$12.5 {\sim} 200$	5	-	-	-	\checkmark
FallDeFi [44]	1	1070	19	90	1000	5	-	-	-	\checkmark
WiAR [22]	1	4161	16	90	30	5	-	\checkmark	-	\checkmark
ARIL [57]	1	1394	6	52	-	-	-	-	\checkmark	\checkmark
Brinke $et al. [4]$	1	3749	6	270	20	2.4	-	\checkmark	-	\checkmark
RF-NET [11]	1	12000	6	60	100	-	-	-	-	\checkmark
Baha et al. $[2]$	1	9000	12	90	320	2.4	-	\checkmark	-	\checkmark
CSIDA [27]	1	2844	6	342	1000	5	-	\checkmark	\checkmark	\checkmark
NTU-Fi [67]	1	2040	6	342	500	5	-	\checkmark	-	\checkmark
CPAR [66]	1	560	7	64	1000	2.4	-	\checkmark	-	\checkmark
Widar $[45]$	1	54	2	90	2000	5	-	-	\checkmark	\checkmark
Widar 2.0 [46]	1	24	2	90	1000	5	-	-	\checkmark	\checkmark
Widar 3.0 [77]	1	271050	22	90	1000	5	-	\checkmark	\checkmark	\checkmark
Yang et al. $[71]$	1	1050	8	90	30	5	-	\checkmark	\checkmark	\checkmark
Moshiri et al. [14]	1	420	7	52	200	5	-	\checkmark	-	\checkmark
OPERAnet [3]	$0\!\sim\!1$	6235	6	540	1600	5	-	\checkmark	-	\checkmark
MM-Fi [70]	1	1080	27	342	1000	5	\checkmark	\checkmark	-	\checkmark
SHARPax [40]	$0\!\sim\!1$	108	3	$242\!\sim\!996$	133	5	-	-	-	\checkmark
WiMANS (Ours)	$0 \sim 5$	11286	9	270	1000	2.4/5	\checkmark	\checkmark	\checkmark	\checkmark


- Each sample includes 0 to 5 users performing identical/different activities simultaneously
- 11286 CSI samples of dual WiFi bands (2.4 / 5 GHz)
- Synchronized video samples
- Annotated with (anonymized) user identities, locations, and activities
- The first benchmark for the multi-user sensing performance of WiFibased models

5 GHz

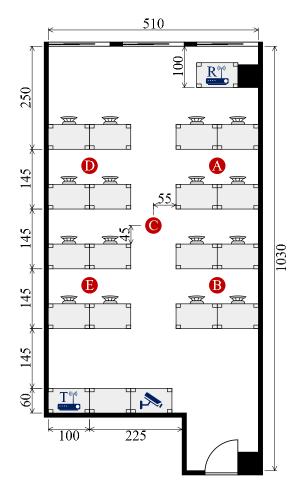
he has the state of the second an 20 for all the systems of the second state in the second second second second second second second second s WWW. J. WAY J. CONTA

Classroom

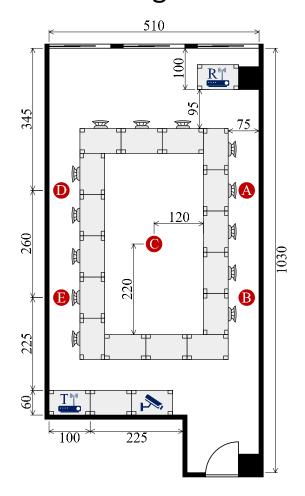
4 Users

Meeting Room

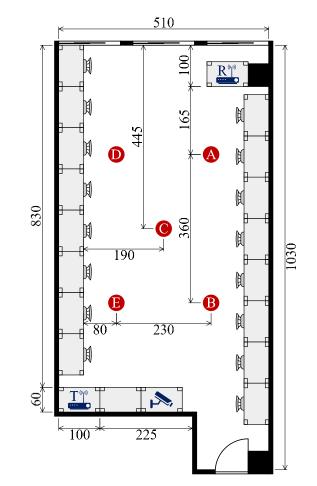
5 Users Empty Room

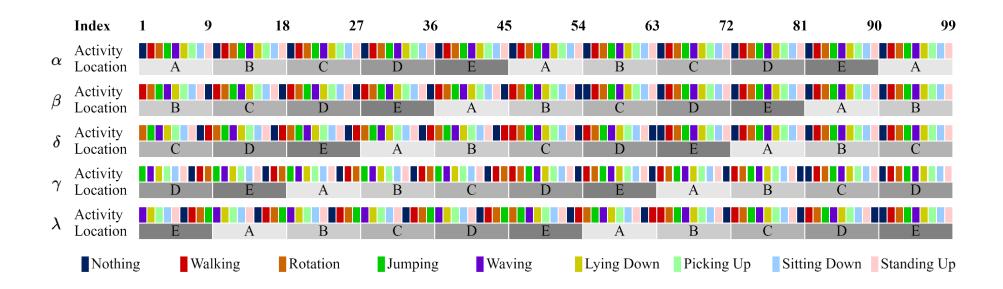

WiMANS

- Each CSI Sample
 - 3 seconds under a rate of 1000 Hz: 3000 time steps
 - A transmitter with 3 antennas
 - A receiver with 3 antennas
 - Each pair of antennas with 30 subcarriers
 - Dimension: 3000 x 3 x 3 x 30
- Each Video Sample
 - 3 seconds under a frame rate of 30 Hz: 90 time steps
 - RGB channels: 3
 - Frame resolution: 1920 x 1080
 - Dimension: 90 x 3 x 1920 x 1080

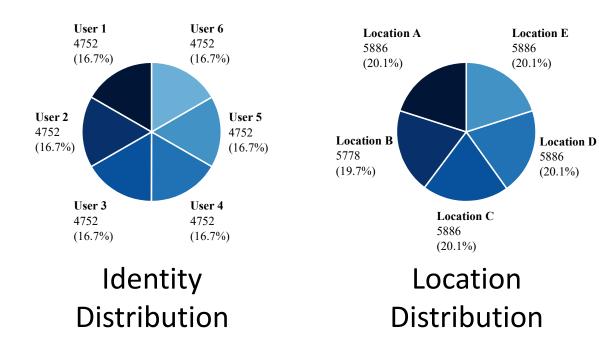

- 9 Daily Activities
 - Nothing, Walking, Rotation, Jumping, Waving, Lying Down, Picking Up, Sitting Down, Standing Up
- 3 Daily Environments
 - Classroom, Meeting Room, Empty Room

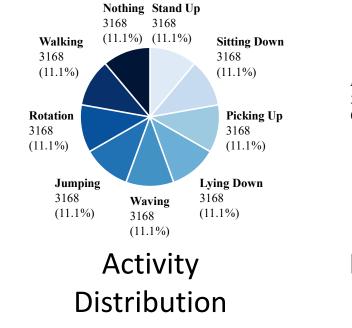
WiMANS

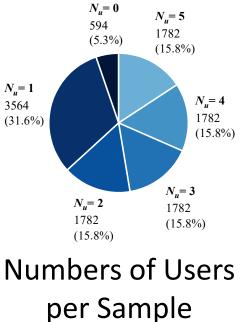

Classroom


Meeting Room

Empty Room


- Simultaneous Scripts
 - Instruct users to perform identical/different activities at varying locations independently yet simultaneously




- Data Annotation
 - "act_<group>_<sample>"
 - Each group: a specific number of users and environment
 - Each label: environment, WiFi band, number of users, identities, locations, and activities

WiMANS

• Dataset Statistics

- WiFi-based Models
 - Short-time Fourier Transform Based Random Forest (ST-RF)
 - MLP
 - LSTM
 - CNN-1D
 - CNN-2D
 - CLSTM
 - ABLSTM
 - THAT

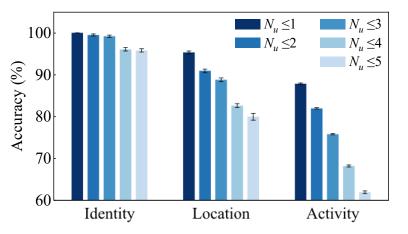
- Video-based Models
 - ResNet
 - S3D
 - MViT-v1
 - MViT-v2
 - Swin-T
 - Swin-S

• WiFi-based Models

Model	Classroom			Meeting Room			Empty Room				
Model	Identity	Location	Activity	Identity	Location	Activity	Identity	Location	Activity		
	$2.4 \mathrm{GHz}$										
ST-RF [73] MLP [67] LSTM [73] CNN-1D [58] CNN-2D [42] CLSTM [41] ABLSTM [7] THAT [34]	$\begin{array}{c} 65.7 \pm 0.91 \\ 80.7 \pm 1.43 \\ 84.8 \pm 0.80 \\ 90.0 \pm 0.66 \\ 90.2 \pm 0.70 \\ 88.8 \pm 1.36 \end{array}$	$\begin{array}{c} 60.5 \pm 0.47 \\ 66.9 \pm 1.09 \\ 73.2 \pm 0.22 \\ 77.0 \pm 0.37 \\ 73.0 \pm 0.68 \\ 76.6 \pm 0.42 \end{array}$	$56.8 \pm 0.14 \\ 57.6 \pm 0.13 \\ 59.2 \pm 0.42 \\ 59.6 \pm 0.24 \\ 59.5 \pm 0.15 \\ 61.8 \pm 0.55 \\ 61.6 \pm 0.50 \\ 61.0 \pm 0.32 \\ \end{array}$	$\begin{array}{c} 75.9 \pm 0.62 \\ 89.5 \pm 1.11 \\ 92.9 \pm 0.26 \\ \textbf{96.4} \pm 0.81 \\ 94.6 \pm 0.49 \\ \textbf{94.8} \pm 0.55 \end{array}$	$\begin{array}{c} 64.2 \pm 0.47 \\ 71.7 \pm 0.88 \\ 77.2 \pm 0.19 \\ 82.1 \pm 0.40 \\ 77.4 \pm 0.75 \\ 77.7 \pm 0.61 \end{array}$	$57.8 \pm 0.16 \\ 59.0 \pm 0.33 \\ 58.5 \pm 0.11 \\ 59.0 \pm 0.12 \\ 60.9 \pm 0.39 \\ 60.9 \pm 0.27 \\$	$\begin{array}{c} 75.3 \pm 0.59 \\ 86.7 \pm 0.99 \\ 88.1 \pm 0.46 \\ 91.1 \pm 0.82 \\ 92.8 \pm 0.27 \\ 90.9 \pm 0.54 \end{array}$	$58.8 \pm 0.26 \\ 67.8 \pm 0.65 \\ 74.5 \pm 0.31 \\ 79.1 \pm 0.52 \\ 71.8 \pm 0.95 \\ 76.0 \pm 0.55 \\ \end{array}$	$57.0\pm0.1257.7\pm0.5458.0\pm0.1758.2\pm0.2661.0\pm0.4059.7\pm0.15$		
				$5~{ m GH}$	Iz						
ST-RF [73] MLP [67] LSTM [73] CNN-1D [58] CNN-2D [42] CLSTM [41] ABLSTM [7] THAT [34]	$98.6 \pm 0.13 \\98.9 \pm 0.16 \\99.5 \pm 0.21 \\99.1 \pm 0.21 \\99.7 \pm 0.19 \\99.6 \pm 0.29$	$\begin{array}{c} 72.7 \pm 0.82 \\ 76.1 \pm 0.68 \\ 82.4 \pm 0.34 \\ 82.7 \pm 0.41 \\ 82.0 \pm 0.50 \\ 82.5 \pm 0.67 \end{array}$	$57.3 \pm 0.08 \\ 58.6 \pm 0.14 \\ 60.6 \pm 0.28 \\ 60.6 \pm 0.22 \\ 59.8 \pm 0.30 \\ 64.2 \pm 0.55 \\ 61.4 \pm 0.22 \\ 61.8 \pm 0.29 \\ \end{cases}$	$\begin{array}{c} 99.5 \pm 0.11 \\ 99.7 \pm 0.17 \\ 99.7 \pm 0.12 \\ 99.8 \pm 0.11 \\ 99.8 \pm 0.08 \\ 99.8 \pm 0.08 \end{array}$	$\begin{array}{c} 79.1 \pm 0.42 \\ 81.3 \pm 0.80 \\ 87.1 \pm 0.32 \\ 88.2 \pm 0.37 \\ 88.1 \pm 0.55 \\ 87.4 \pm 0.25 \end{array}$	57.4 ± 0.14 59.5 ± 0.23 59.0 ± 0.16 58.6 ± 0.29 62.1 ±0.36 60.4 ± 0.16	$\begin{array}{c} 95.1 \pm 0.58 \\ 95.8 \pm 0.50 \\ 95.9 \pm 0.36 \\ 95.3 \pm 0.36 \\ \textbf{97.6} \pm 0.25 \\ 96.7 \pm 0.38 \end{array}$	74.5 ± 0.87 77.4 ± 0.37 84.0 ± 0.58 84.4 ± 0.40 84.4 ± 0.64 83.8 ± 0.53	$59.2 \pm 0.23 \\ 59.8 \pm 0.36 \\ 60.2 \pm 0.14 \\ 59.6 \pm 0.28 \\ 64.8 \pm 0.38 \\ 61.3 \pm 0.15 \\ \end{array}$		
				$2.4 \ / \ 5$	GHz						
ST-RF [73] MLP [67] LSTM [73] CNN-1D [58] CNN-2D [42] CLSTM [41] ABLSTM [7] THAT [34]	$74.9\pm0.48\\86.9\pm0.90\\92.6\pm0.42\\94.6\pm0.50\\93.1\pm0.46\\92.4\pm0.39$	$\begin{array}{c} 66.0 \pm 0.32 \\ 69.5 \pm 0.79 \\ 78.3 \pm 0.25 \\ 79.2 \pm 0.40 \\ 79.9 \pm 0.48 \\ 79.2 \pm 0.38 \end{array}$	$57.3 \pm 0.09 \\ 57.9 \pm 0.13 \\ 59.6 \pm 0.24 \\ 60.7 \pm 0.14 \\ 59.2 \pm 0.29 \\ 64.0 \pm 0.42 \\ 62.1 \pm 0.16 \\ 61.8 \pm 0.19 \\ \end{array}$	85.9 ± 0.78 93.9 ± 0.60 96.6 ± 0.21 98.0 ± 0.35 97.4 ± 0.28 97.8 ± 0.17	$\begin{array}{c} 69.2 \pm 0.28 \\ 75.2 \pm 0.46 \\ 82.8 \pm 0.25 \\ \textbf{83.6} \pm 0.36 \\ 83.1 \pm 0.33 \\ 82.8 \pm 0.42 \end{array}$	57.6 ± 0.07 59.7 ± 0.31 59.5 ± 0.17 58.5 ± 0.28 62.4 ± 0.28 60.9 ± 0.17	$\begin{array}{c} 80.1 \pm 0.53 \\ 90.1 \pm 0.95 \\ 93.5 \pm 0.21 \\ 94.5 \pm 0.41 \\ 95.3 \pm 0.38 \\ 95.0 \pm 0.34 \end{array}$	$\begin{array}{c} 66.2 \pm 0.48 \\ 70.4 \pm 0.27 \\ 78.5 \pm 0.21 \\ \textbf{80.1} \pm 0.51 \\ 78.2 \pm 0.60 \\ 78.9 \pm 0.54 \end{array}$	$58.4\pm0.0858.9\pm0.2559.7\pm0.1258.3\pm0.2163.5\pm0.3661.4\pm0.29$		

• Number of Users

(b) Meeting Room


 $N_u \leq 3$

 $N_u \leq 4$

 $N_u \leq 5$

Activity

(c) Empty Room

• Video-based Models

Model	Classroom			Meeting Room			Empty Room		
model	Identity	Location	Activity	Identity	Location	Activity	Identity	Location	Activity
ResNet [52] S3D [64] MViT-v1 [13] MViT-v2 [36] Swin-T [38] Swin-S [38]	99.9 ±0.00 99.9±0.05 99.8±0.06 99.8±0.05	99.5 ± 0.50 99.3 ± 0.26 99.7 ± 0.05 99.6 ± 0.05	94.0 ± 1.35 93.7 ± 0.44 95.1 ± 0.11 96.6 ± 0.12	99.9 ± 0.04 99.7 ± 0.12 99.8 ± 0.13 99.9 ± 0.05	99.9 ±0.02 99.6±0.05 99.8±0.04 99.7±0.07		99.7 ± 0.32 99.7 ± 0.04 99.8 ± 0.12 99.9 ± 0.04	99.9 ± 0.01 99.8±0.01 99.9±0.01 99.8±0.01	$98.5 \pm 0.15 94.0 \pm 0.10 95.2 \pm 0.11 94.1 \pm 0.13$

• Model Complexity and Time Efficiency

Data	Model	Input Size	Parameters (M)	FLOPs (C)	Throughput (Recs/s)			
	model	input Size	i arameters (m)	11013 (G)	Identity	Location	Activity	
	MLP [67]	810000	209.020	0.418	2918.97	3399.19	3385.97	
	LSTM [73]	3000×270	1.609	0.971	3047.69	3045.22	3058.85	
	CNN-1D [58]	$3000\! imes\!270$	1.916	0.516	2685.73	2679.96	2670.38	
WiFi CSI	CNN-2D [42]	3000×270	0.893	1.691	2132.54	2183.23	2137.92	
	CLSTM [41]	$3000\! imes\!270$	5.391	1.791	2704.11	2707.01	2754.48	
	ABLSTM [7]	$3000\! imes\!270$	4.268	3.208	2493.05	2614.77	2708.44	
	THAT [34]	3000×270	4.900	1.650	1937.48	1971.58	1955.32	
	ResNet [52]	$90 \times 3 \times 112 \times 112$	33.393	17.670	50.81	51.10	51.10	
	S3D [64]	$90 \times 3 \times 224 \times 224$	8.342	204.644	113.86	120.74	117.29	
7.1	MViT-v1 [13]	$90 \times 3 \times 224 \times 224$	36.632	632.698	47.93	48.03	47.94	
Video	MViT-v2 [36]	$90 \times 3 \times 224 \times 224$	34.559	577.742	38.24	38.17	38.16	
	Swin-T [38]	$90 \times 3 \times 224 \times 224$	28.180	268.797	44.90	44.80	44.83	
	Swin-S [38]	$90 \times 3 \times 224 \times 224$	49.838	518.993	27.40	27.43	27.41	

Discussion

- Limitations
 - Daily activities
 - Challenging conditions
 - WiFi devices
- Future Work
 - Multi-user pose estimation
 - Dual-band augmented sensing
 - Cross-domain sensing

IMPERIAL

WiMANS

The First Dataset for WiFi-based Multi-user Activity Sensing

https://github.com/huangshk/WiMANS

EUROPEAN CONFERENCE ON COMPUTER VISION

MILAN O