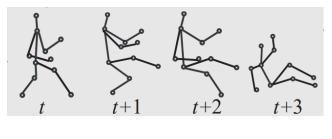
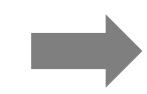
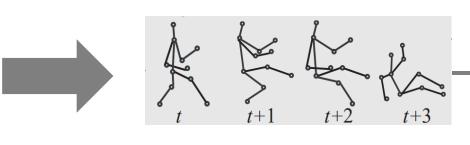

Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition Lilang Lin, Lehong Wu, Jiahang Zhang, Jiaying Liu | Wangxuan Institute of Computer Technology, Peking University

Introduction


Background: unsupervised skeleton-based action recognition


- Skeletons represent human joints using 3D coordinate locations

- Supervised learning \rightarrow self-supervised learning
- Supervised learning



Action label: Fall

Self-supervised learning

No Label Pretext Tasks

Self-Supervised Pretrain

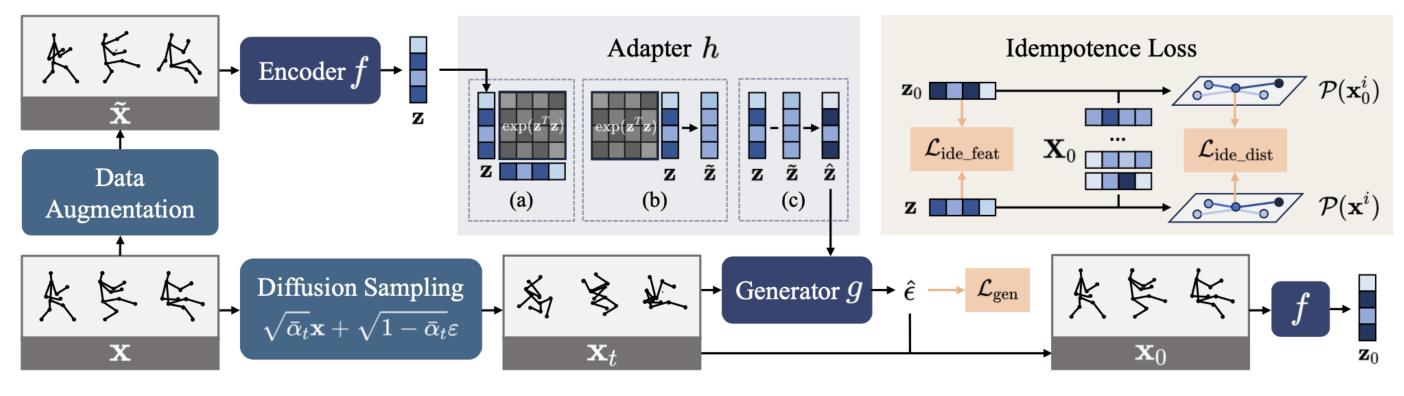
Supervised Finetune

Challenges: gaps between generative models and contrastive learning

- Generative models preserve too much appearance information - Contrastive learning result in a significant detail information loss Self-Conditional Generative Models as Maximum Entropy Coding $\mathcal{L} = \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}} \left[\mathcal{D}(g(\mathbf{z}), \mathbf{x}) \right] = \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}} \left[\mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}|\mathbf{x}}} \left[-\log p(\mathbf{x}|\mathbf{z}) \right] \right] = H(\mathbf{x}|\mathbf{z})$ $I(\mathbf{z};\mathbf{x}) = H(\mathbf{x}) - H(\mathbf{x}|\mathbf{z}) = H(\mathbf{z}) - H(\mathbf{z}|\mathbf{x})$

$$L = \left(\frac{m+d}{2}\right) \log \det \left(\mathbf{I} + \frac{d}{m\varepsilon^2} \mathbf{Z}^T \mathbf{Z}\right)$$

$$L = \operatorname{Tr}\left(\mu \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(\lambda \mathbf{Z}^{T} \mathbf{Z}\right)^{n}\right)$$

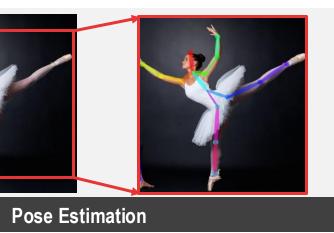

Method

Idempotent Generative Models as Spectral Contrastive Learning

- Idempotent loss & Spectral contrastive learning

$$\begin{split} \mathcal{L}_{ide} &= \|f(\hat{\mathbf{x}}) - \mathbf{z}\|^2 = -2f(\hat{\mathbf{x}})^T f(\mathbf{x}) \\ \mathcal{L} = \mathcal{L}_{ide} - L = -2\sum_{\mathbf{x}, \hat{\mathbf{x}}} p(\mathbf{x}, \hat{\mathbf{x}}) f(\hat{\mathbf{x}}_i)^T f(\mathbf{x}_i) + \sum_{\mathbf{x}, \mathbf{x}'} p(\mathbf{x}) p(\mathbf{x}') \left(f(\mathbf{x})^T f(\mathbf{x}')\right)^2 + \mathbf{R} \\ &= -2\mathbb{E}_{(\mathbf{x}, \hat{\mathbf{x}}) \sim p(\mathbf{x}, \hat{\mathbf{x}})} \left[f(\hat{\mathbf{x}})^T f(\mathbf{x})\right] + \mathbb{E}_{(\mathbf{x}, \mathbf{x}') \sim p(\mathbf{x}) p(\mathbf{x}')} \left[\left(f(\mathbf{x})^T f(\mathbf{x}')\right)^2\right] + \mathbf{R} \\ &= -2\mathrm{Tr} \left(\mathbf{F} \mathbf{A} \mathbf{F}^T\right) + \mathrm{Tr} \left(\left(\mathbf{F}^T \mathbf{F}\right)^2\right) + \mathbf{R} = 2\mathrm{Tr} \left(\mathbf{F} \mathbf{L} \mathbf{F}^T\right) + \mathrm{Tr} \left(\left(\mathbf{F}^T \mathbf{F}\right)^2\right) + \mathbf{R} + \mathrm{const} \\ &= \|\mathbf{A} - \mathbf{F}^T \mathbf{F}\|_F^2 + \mathbf{R} + \mathrm{const}, \end{split}$$

- Idempotent Diffusion Generation Model



- Noise prediction loss

$$\mathcal{L}_{\text{gen}} = \|g(\mathbf{x}_t, h(\mathbf{z}), t) - \varepsilon$$
$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x} + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$

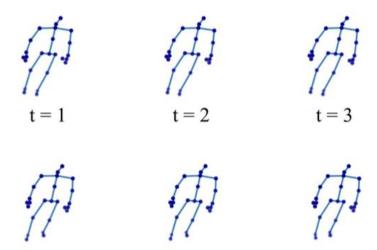
Feature idempotency constraint

$$\mathbf{x}_{0} = \frac{1}{\sqrt{\bar{\alpha}_{t}}} \left(\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}} g(\mathbf{x}_{t}, h(\mathbf{z}), t) \right)$$
$$\mathcal{L}_{\text{ide}_\text{feat}} = -f(\mathbf{x})^{T} f(\mathbf{x}_{0}, \mathbf{z}_{t'}, t, t'),$$
$$\mathbf{z}_{t'} = \sqrt{\bar{\alpha}_{t'}} \mathbf{z} + \sqrt{1 - \bar{\alpha}_{t'}} \varepsilon, \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

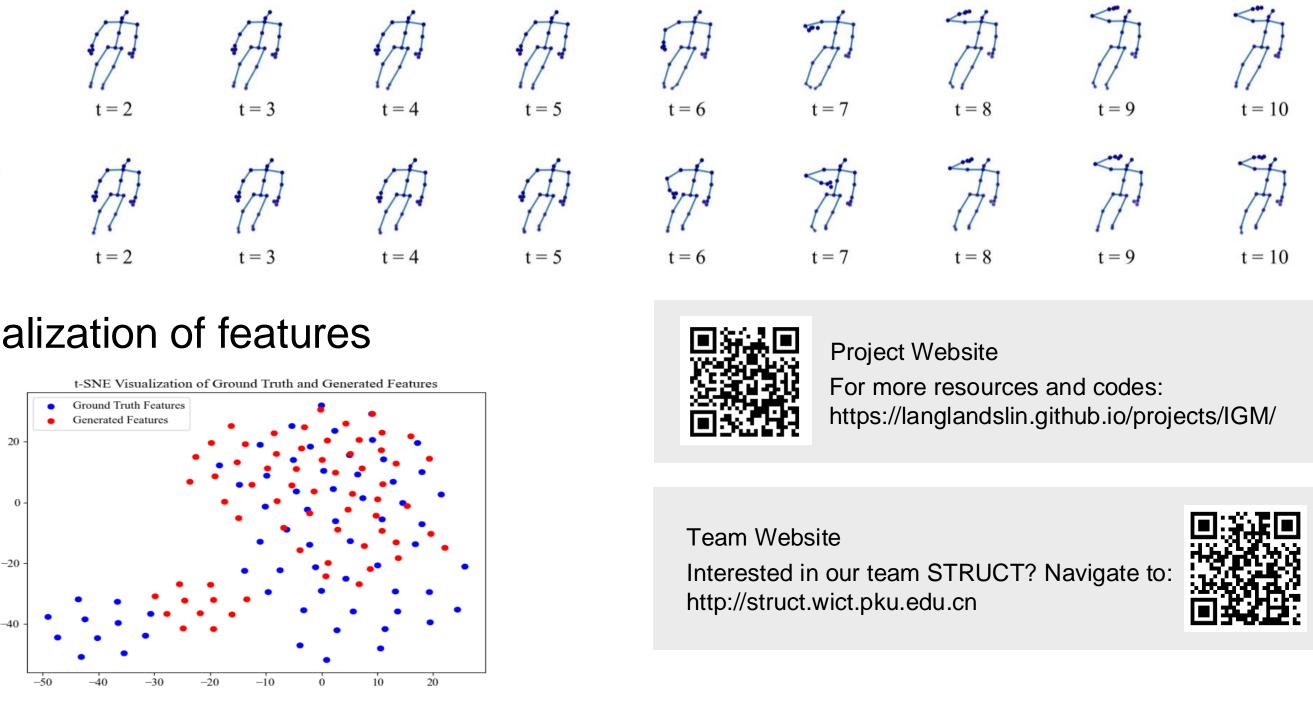
→ Action label: Fall

,

 $arepsilon, \quad arepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$


Experiments

Evaluation and comparison


Models	Architecture	NTU 60		NTU 120	
		xview	xsub	\mathbf{xset}	xsub
Contrastive Learning:					
3s-AimCLR [11]	GCN	83.4	77.8	66.7	67.9
3s-CPM [64]	GCN	84.9	78.7	69.6	68.7
3s-CMD [29]	GRU	90.9	84.1	76.1	74.7
GL-Transformer [18]	Transformer	83.8	76.3	68.7	66.0
3s-ActCLR [21]	GCN	88.8	84.3	75.7	74.3
Generative Learning:					
3s-Colorization [61]	DGCNN	87.2	79.1	70.8	69.2
SkeletonMAE [58]	GCN	77.7	74.8	73.5	72.5
MAMP [28]	Transformer	89.1	84.9	79.1	78.6
Contrative Learning & Generative Learning:					
CRRL [53]	GRU	73.8	67.6	57.0	56.2
PCM^3 [65]	GRU	90.4	83.9	77.5	76.3
IGM (Ours)	Transformer	91.2	86.2	81.4	80.0

Ablation Study

t = 1

- Visualization of features

EUROPEAN CONFERENCE ON COMPUTER VISION

MILANO

- Visualization of ground truth data and generated data

If you have any questions, please contact: linlilang@pku.edu.cn