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Background: PEFT with Low-Rank Bottlenecks
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• colored modules à update
• down-project then up-project:
   à 𝑊!"#$: 𝑑 → 𝑟 ;  𝑊%&: 𝑟 → 𝑑 & 𝑟 ≪ 𝑑

• For uni-modal tasks:

   compression from 𝑊!"#$ suffices
if 𝑟 > intrinsic dim. (minimum dim. required)

• For multi-modal tasks:

How to balance modalities to enforce alignment 
with simple linear mapping (𝑊!"#$) ?

à Route features through the low-rank bottlenecks
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Method: VL PEFT with Routing Functions
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Given model hidden states (𝑥') and features to be aligned to 𝑥( (e.g. visual features):
Routing functions ▷ route 𝑊!"#$𝑥' and 𝑊!"#$𝑥( in the low-rank bottlenecks 
                             ▷ use Linear operation with NO extra parameters
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(1) Element-wise multiplication:
!! ∘ !"#

(2) Element-wise addition:
!! +!"#

(3) Matrix multiplication 1:
!! !" $!"

(4) Matrix multiplication 2:
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Experiment with Encoder/Decoder-only Language Models
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• Encoder-only LM: RoBERTa; decoder-only LM: GPT2
• Generative task: COCO Cap.; discriminative task: VQAv2
• Base PEFT module: Adapter/LoRA
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ViT
(Frozen)

[CLS] Feat.

!!
[VQA]

ViT
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GPT

Train: A large bus sitting 
next to a very tall building
Test: [No Text Input]

A large bus sitting next 
to a very tall building.
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Experiment with Encoder/Decoder-only Language Models

5

M I L A N O
2 0 2 4

VERSIONE POSITIVA

8 T. Qu et al.

Table 4: Results of different types of routing functions on COCO Cap. The Avg. score
is the averaged result from BLEU-4, METEOR, ROUGE-L, CIDEr, and SPICE. The
best and second best results are in bold and underlined, respectively.

Routing LoRA, r=64 LoRA, r=128
Functions BLEU-4 METEOR ROUGE-L CIDEr SPICE Avg. BLEU-4 METEOR ROUGE-L CIDEr SPICE Avg.
None 18.3 17.4 36.8 55.8 11.8 28.02 21.0 20.9 43.4 70.3 14.7 34.06
xt � x0

v 26.1+7.8 23.7+6.3 48.6+11.8 88.7+32.9 17.3+5.5 40.88+12.86 25.4+4.4 23.7+2.8 48.2+4.8 87.9+17.6 17.7+3.0 40.58+6.52

xt + x0
v 22.2+3.9 20.3+2.9 41.0+4.2 73.5+17.7 14.8+3.0 34.36+6.34 25.4+4.4 23.1+2.2 47.1+4.7 87.1+16.8 17.0+2.3 39.94+5.88

xt(xv)
Txv 24.8+6.5 22.6+5.2 45.4+8.6 84.9+29.1 16.8+5.0 38.90+10.88 24.9+3.9 22.7+1.8 45.4+2.0 83.8+13.5 16.9+2.2 38.74+4.68

xtx
00
v 23.9+5.6 21.9+4.5 43.9+7.1 80.5+14.7 16.2+4.4 37.28+9.26 25.5+4.5 22.9+2.0 46.0+2.6 85.2+14.9 17.2+2.5 39.36+5.30

Routing Adapter, r=64 Adapter, r=128
Functions BLEU-4 METEOR ROUGE-L CIDEr SPICE Avg. BLEU-4 METEOR ROUGE-L CIDEr SPICE Avg.
None 15.9 18.5 37.0 61.6 14.1 29.42 16.1 18.4 36.2 61.5 13.9 29.22
xt � x0

v 24.6+8.7 23.1+4.6 46.4+9.4 84.5+22.9 17.2+3.1 39.16+9.74 23.6+7.5 22.6+4.2 44.8+8.6 82.8+21.3 17.1+3.2 38.18+8.96

xt + x0
v 21.0+5.1 21.5+3.0 42.4+5.4 75.0+14.4 16.0+1.9 35.18+5.76 19.3+3.2 20.8+2.4 40.9+4.7 75.2+13.8 16.2+2.3 34.48+5.26

xt(xv)
Txv 26.1+10.2 23.2+4.7 46.9+9.9 85.4+23.8 17.3+3.2 39.78+10.36 24.1+8.0 22.4+4.0 44.2+8.0 82.7+21.2 16.9+3.0 38.06+8.84

xtx
00
v 26.6+10.7 23.0+4.5 46.8+9.8 85.8+24.2 17.2+3.1 39.88+10.46 26.0+9.9 23.5+5.1 46.8+10.6 86.3+24.8 17.8+3.9 40.08+10.86

types of answers, which could be explained by the large variety in content of
these questions.

Tab. 3 shows our method’s performance across various question types. Four
distinct question types test the method’s reasoning capabilities concerning fine-
grained visual information: spatial information ("where", e.g . Where is the surf-
board?), color information ("color", e.g . What color is the bike?), time informa-
tion ("time", e.g . What time is on the clock?), and person information ("person",
e.g . What is the man holding?).9 Adding routing functions significantly improves
the performance of LoRA and Adapter. Notably, different routing functions seem
to capture different aspects of the visual information. xt+x0

v
shows great perfor-

mance while reasoning on spatial information (where) and person information
(person). It is assumed that the addition operator reinforces feature values of
content both present in the question and image, which might be beneficial for
spatial and person questions. Similarly, xtx00

v
performs exceptionally well for time

information (time). With xt �x0
v
, we obtain relatively better performance on the

color information (color). xt(xv)Txv presents consistent strong abilities while
aligning spatial information (where) and color information (color).

In Appendix B, we show an additional ablation study on replacing visual
features (xR) with random noise or all-ones features. We also compare infer-
ence time of LoRA/Adapter with LoRA/Adapter + routing functions, where we
observe adding routing functions to PEFT methods does not reduce efficiency.
Overall performance on image captioning Evaluation of image captioning
relies on the overall assessment of the generated captions. We report multi-
ple text generation metrics and their average scores in Tab. 4. The addition
of routing functions again leads to significant performance gains for all met-
rics in all scenarios. As was the case with VQAv2, different patterns are ob-
served. Changing the intermediate dimension r from 128 to 64 seems to have
a larger impact on the model performance with conventional LoRA, where
without the routing functions the CIDEr score drops from 70.3 to 55.8. In
contrast, models augmented with routing functions remain robust and per-

9 The comprehensive list of question types is included in Appendix A.

Routing Functions For VL PEFT 7

epochs using the AdamW optimizer with batch size of 40 and learning rate=3e-5,
where we warm up the first 5000 steps. For more details, see Appendix A.

4.3 Results

Overall performance on VQA We first evaluate our routing functions on the
discriminative task VQAv2 with RoBERTabase and ViT-B/16, see Tab. 1.

Table 1: Accuracy and improvement over
the baseline (in blue) obtained by different
types of routing functions on VQAv2. The
best results and second best results are in
bold and underlined, respectively.
Routing r = 64 r = 128
Functions LoRA Adapter LoRA Adapter
None 44.15 44.16 44.45 44.28
xt � x0

v
53.51+9.36 52.78+8.62 53.86+10.41 53.01+8.73

xt + x0
v

52.60+8.45 53.94+9.78 52.88+8.43 53.95+9.67

xt(xv)Txv 53.88+9.73 54.48+10.32 53.09+8.64 55.06+10.78

xtx00
v

54.21+10.06 54.96+10.80 51.88+7.43 54.38+10.10

Without the addition of routing
functions, models with LoRA and
Adapter reach a similar level of perfor-
mance. All four types of routing func-
tions significantly improve the perfor-
mance of the original PEFT method
in terms of accuracy of the answer.
The dimension of the bottleneck does
not have a strong impact on the final
performance. Sometimes we can even
obtain better performance with lower
dimensions. It is a sign that the in-
trinsic dimension of the VL task is not
high, just as observed in uni-modal tasks. Moreover, we observe that the routing
functions involving matrix multiplications (i.e. xt(xv)Txv & xtx00

v
) perform quite

well in most scenarios for both LoRA and Adapter, while the routing functions
involving element-wise operations (i.e. xt�x0

v
& xt+x0

v
) are just slightly behind.

Table 2: Results in terms of accu-
racy with different routing functions on
VQAv2 sorted by answer type. The "all"
column reports overall accuracy.

Routing LoRA, r = 128 Adapter, r = 128
Functions all yes/no number other all yes/no number other
None 44.45 68.67 31.29 29.20 44.28 68.38 31.19 29.11
xt � x0

v 53.86 72.29 35.36 44.48 53.01 71.72 33.34 43.72
xt + x0

v 52.88 72.03 34.20 43.00 53.95 72.43 35.38 44.56
xt(xv)

Txv 53.09 70.63 35.40 44.19 55.06 74.09 33.59 45.99
xtx

00
v 51.88 69.92 33.29 42.82 54.38 73.00 33.94 45.35

Table 3: Results in terms of accuracy with
different routing functions on VQAv2 sorted
by question type. The "all" column reports
overall accuracy.

Routing LoRA, r = 128 Adapter, r = 128
Functions all where color time person all where color time person
None 44.45 22.64 40.00 14.29 45.17 44.28 22.93 40.15 13.70 44.94
xt � x0

v 53.86 35.70 51.69 23.07 62.74 53.01 35.59 52.63 20.73 62.28
xt + x0

v 52.88 36.12 49.33 21.22 62.95 53.95 37.08 52.08 21.66 63.76
xt(xv)

Txv 53.09 36.33 52.86 22.29 61.74 55.06 36.92 53.66 24.44 63.85
xtx

00
v 51.88 34.19 51.60 22.63 61.14 54.38 35.64 52.77 21.85 62.50

To dive deeper into the behaviors of different types of routing functions, we
evaluate the performance on different answer types as presented in Tab. 2. The
largest improvements are obtained for the "other" category for all four routing
functions. It can be seen that different routing functions excel for different answer
types. For example, even when the two element-wise operations reach lower
overall accuracy, they lead to higher or comparable accuracy on number-type
answers. As for the routing functions involving matrix multiplications, better
performance on other-type answers is obtained. For instance, with relatively
lower overall accuracy reached in LoRA, matrix multiplications reach comparable
performance on other-type answers. No clear pattern can be observed for yes/no
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formant across setups, despite the changes in intermediate dimension. xt � x0
v

and xtx00
v

perform well, possibly due to their alignment power. We also report
the performance of Adapter with larger backbones, namely GPT2-medium and
ViT-L/16, in Appendix B. Consistent and significant improvements in perfor-
mance are observed, showing the efficacy of our routing functions on the task.

Table 5: Comparing routing functions with
cross-attention on COCO Cap. †: parallel
Adapter as used in [27]. Separate Map.:
separate mapping for query/key/value
(in cross-attn.) or features xR/xH (in
xt(xv)

Txv). Here r = 128. Avg. indicates
the same average scores as in Tab. 4. Full
evaluation in Appendix B.
PEFT Separate Map. Alignment Param. BLEU-4 CIDEr Avg.
LoRA 3 Cross-attn. 4.786M 28.7 92.2 43.02
LoRA 3 xt(xv)Txv 3.932M 30.7+2.0 99.4+7.2 45.68+2.66

LoRA 7 xt(xv)Txv 4.746M 30.0+1.3 99.0+6.8 45.38+2.36

Adapter† 3 Cross-attn. 4.732M 30.7 99.8 45.70
Adapter† 7 xt(xv)Txv 1.830M 30.8+0.1 98.8�1.0 45.48�0.22

Comparison to cross-attention

Here we compare the results of
the integration of routing function
xt(xv)Txv with these of integrating
cross-attention between the textual
and the visual representation in im-
age captioning. Indeed, in principle,
a cross-attention function can also be
considered as a kind of routing func-
tion with nonlinear operations.

I-Tuning [27] implements an Adapter
with cross-attention for image cap-
tioning. To have a fair comparison, we
follow the settings of I-Tuning for both LoRA and Adapter. Specifically, (1) in-
stead of using the visual features, we prepend the "<s>" token to the input text.
(2) We use the last hidden state from ViT as key and value for cross-attention
and as xR for routing functions. This change is needed, since the [CLS] feature is
of length 1, which does not work for cross-attention due to the Softmax function.

In the case of LoRA, we also implement a variant with separate Wdown map-
pings for xR and xH . This brings LoRA with routing function closer to LoRA
with cross-attention.10 Without separate mapping refers to the setting used
in previous experiments, where xR and xH share the same Wdown. As shown
in Tab. 5, despite of having less parameters, LoRA+xt(xv)Txv (w/ separate map-
ping) achieves significantly better performance than LoRA with cross-attention.
The setup of LoRA+xt(xv)Txv (w/o separate mapping) outperforms LoRA with
cross-attention by a large margin using a similar amount of parameters.

For Adapter, the cross-attention module has the same intermediate dimen-
sion as the Wdown in Adapter with routing function. Naturally, the separate
query/key/value mappings make that the Adapter with cross-attention has more
than double the number of parameters compared to the Adapter equipped with
the routing function (xt(xv)Txv). Both achieve comparable performance (Tab. 5).

To conclude, Tab. 5 shows that integrating xt(xv)Txv in LORA and Adapter
yields better performance given the same amount of parameters, or is similar in
performance while using substantially less parameters. For VL tasks like image
captioning, integrating a routing function to guide feature representations in
low-rank bottlenecks has superior abilities compared to cross-attention.

10 Appendix A shows detailed architectures and explains why routing functions out-
perform cross-attention. We down-project to r/4 and r for LoRA w/ & w/o separate
mapping, respectively, to have the same level of parameter count.

COCO Cap.: VQAv2:

Comparison to cross-attention:

1. Significant improvements on both generative (COCO Cap.) and discriminative (VQAv2) tasks.
2. Comparable to cross-attention, with fewer parameters & linear operations
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Adapter

Adapter

<task prompt> + sentence:
e.g. 
<vqa> Is the water still?

Visual Features 
extracted by CLIP

Visual 
Projection

Add & Norm

Cross Attention

Feed-forward

Add & Norm

Adapter

Adapter

Add & Norm

Self Attention

Adapter
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(pooled)

Text Output

!!

!!

!!

Feed-forward

Decoder

Encoder

• Multi-task learning of four VL tasks 
(VQAv2, GQA, NLVR2 and COCO Cap.)

• Single Adapter/LoRA for all tasks:
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Table 7: Experiments with different types of routing functions using CLIP-BART
with single LoRA/Adapter. Following [11] (†) 11, we report the average CIDEr score
for COCO Cap., accuracy for the other three tasks. We also report the average accuracy
from VQA, GQA and NLVR2. We bold and underline the best and second best results.

Routing Single LoRA Single Adapter
Functions VQA GQA NLVR2 Avg. COCO Cap. VQA GQA NLVR2 Avg. COCO Cap.
None† 65.15 53.66 72.58 63.80 115.01 65.76 54.16 73.19 64.37 114.61
xt � x0

v 65.68 53.96 73.42 64.35 113.94 65.92 54.34 74.23 64.83 114.38
xt + x0

v 65.14 53.73 73.51 64.13 114.96 65.89 54.18 73.90 64.66 114.39
xt(xv)

Txv 64.94 53.56 73.60 64.03 117.80 65.84 53.65 74.31 64.03 117.65
xtx

00
v 64.84 53.13 72.98 63.65 119.26 65.83 53.61 73.27 64.24 118.86

Tab. 7 shows that the integration of the routing functions in the single LoRa
and single Adapter architecture results in improved performance in nearly all
scenarios. But just like the experiments with encoder-only and decoder-only
LMs in Sec. 4.3, different routing functions show different patterns. The routing
functions involving matrix multiplication, that is, xt(xv)Txv and xtx00

v
, perform

exceptionally well in the COCO captioning task, while the other two routing
functions involving element-wise operations, i.e. xt � x0

v
and xt + x0

v
, show more

potential on QA tasks (VQA/GQA). As for the NLVR2 task, xt(xv)Txv and
xt � x0

v
present stronger abilities to learn VL relationships. Note that achieving

relatively low performance on one task does not necessarily mean that the cor-
responding routing function fails. For example, xt � x0

v
does not work well for

captioning, but achieves great performance on the other three tasks. This some-
how contrasts with the results obtained with encoder-only and decoder-only LMs
in Sec. 4.3, where xt � x0

v
leads to one of the best performance on COCO Cap.

The complexity of the multitask learning setup, where different loss functions
are jointly optimized, might here be a confounding factor.
Experiments with multiple Adapters We further explore the behavior of the
routing functions in models with multiple Adapters, where we train a separate
Adapter per task. As also observed in [37], using multiple Adapters increases
the complexity of the model, and yields worse performance compared to using
a single Adapter. As presented in Tab. 8, using the four routing functions with
multiple Adapters leads to comparable or better performance as compared to
multiple Adapters with no routing functions. Moreover, in line with what we
discovered in the experiments with models with a single Adapter, different rout-
ing functions shine on different types of tasks.

In this set-up, we also experiment with combinations of routing functions.
The four combinations integrate the routing functions that work best for each
individual task (e.g . xtx0

v
for COCO Cap.). The results in Tab. 8 evidence that

in this multitask setting combinations of routing functions yield an improved
performance compared to using no routing functions. GQA requires more fine-

11 †: 3 seeds. Appendix C shows that our improvements are significant using paired
t-test with p = 0.05.
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Table 7: Experiments with different types of routing functions using CLIP-BART
with single LoRA/Adapter. Following [11] (†) 11, we report the average CIDEr score
for COCO Cap., accuracy for the other three tasks. We also report the average accuracy
from VQA, GQA and NLVR2. We bold and underline the best and second best results.

Routing Single LoRA Single Adapter
Functions VQA GQA NLVR2 Avg. COCO Cap. VQA GQA NLVR2 Avg. COCO Cap.
None† 65.15 53.66 72.58 63.80 115.01 65.76 54.16 73.19 64.37 114.61
xt � x0

v 65.68 53.96 73.42 64.35 113.94 65.92 54.34 74.23 64.83 114.38
xt + x0

v 65.14 53.73 73.51 64.13 114.96 65.89 54.18 73.90 64.66 114.39
xt(xv)

Txv 64.94 53.56 73.60 64.03 117.80 65.84 53.65 74.31 64.03 117.65
xtx

00
v 64.84 53.13 72.98 63.65 119.26 65.83 53.61 73.27 64.24 118.86

Tab. 7 shows that the integration of the routing functions in the single LoRa
and single Adapter architecture results in improved performance in nearly all
scenarios. But just like the experiments with encoder-only and decoder-only
LMs in Sec. 4.3, different routing functions show different patterns. The routing
functions involving matrix multiplication, that is, xt(xv)Txv and xtx00

v
, perform

exceptionally well in the COCO captioning task, while the other two routing
functions involving element-wise operations, i.e. xt � x0

v
and xt + x0

v
, show more

potential on QA tasks (VQA/GQA). As for the NLVR2 task, xt(xv)Txv and
xt � x0

v
present stronger abilities to learn VL relationships. Note that achieving

relatively low performance on one task does not necessarily mean that the cor-
responding routing function fails. For example, xt � x0

v
does not work well for

captioning, but achieves great performance on the other three tasks. This some-
how contrasts with the results obtained with encoder-only and decoder-only LMs
in Sec. 4.3, where xt � x0

v
leads to one of the best performance on COCO Cap.

The complexity of the multitask learning setup, where different loss functions
are jointly optimized, might here be a confounding factor.
Experiments with multiple Adapters We further explore the behavior of the
routing functions in models with multiple Adapters, where we train a separate
Adapter per task. As also observed in [37], using multiple Adapters increases
the complexity of the model, and yields worse performance compared to using
a single Adapter. As presented in Tab. 8, using the four routing functions with
multiple Adapters leads to comparable or better performance as compared to
multiple Adapters with no routing functions. Moreover, in line with what we
discovered in the experiments with models with a single Adapter, different rout-
ing functions shine on different types of tasks.

In this set-up, we also experiment with combinations of routing functions.
The four combinations integrate the routing functions that work best for each
individual task (e.g . xtx0

v
for COCO Cap.). The results in Tab. 8 evidence that

in this multitask setting combinations of routing functions yield an improved
performance compared to using no routing functions. GQA requires more fine-

11 †: 3 seeds. Appendix C shows that our improvements are significant using paired
t-test with p = 0.05.
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Table 7: Experiments with different types of routing functions using CLIP-BART
with single LoRA/Adapter. Following [11] (†) 11, we report the average CIDEr score
for COCO Cap., accuracy for the other three tasks. We also report the average accuracy
from VQA, GQA and NLVR2. We bold and underline the best and second best results.

Routing Single LoRA Single Adapter
Functions VQA GQA NLVR2 Avg. COCO Cap. VQA GQA NLVR2 Avg. COCO Cap.
None† 65.15 53.66 72.58 63.80 115.01 65.76 54.16 73.19 64.37 114.61
xt � x0

v 65.68 53.96 73.42 64.35 113.94 65.92 54.34 74.23 64.83 114.38
xt + x0

v 65.14 53.73 73.51 64.13 114.96 65.89 54.18 73.90 64.66 114.39
xt(xv)

Txv 64.94 53.56 73.60 64.03 117.80 65.84 53.65 74.31 64.03 117.65
xtx

00
v 64.84 53.13 72.98 63.65 119.26 65.83 53.61 73.27 64.24 118.86

Tab. 7 shows that the integration of the routing functions in the single LoRa
and single Adapter architecture results in improved performance in nearly all
scenarios. But just like the experiments with encoder-only and decoder-only
LMs in Sec. 4.3, different routing functions show different patterns. The routing
functions involving matrix multiplication, that is, xt(xv)Txv and xtx00

v
, perform

exceptionally well in the COCO captioning task, while the other two routing
functions involving element-wise operations, i.e. xt � x0

v
and xt + x0

v
, show more

potential on QA tasks (VQA/GQA). As for the NLVR2 task, xt(xv)Txv and
xt � x0

v
present stronger abilities to learn VL relationships. Note that achieving

relatively low performance on one task does not necessarily mean that the cor-
responding routing function fails. For example, xt � x0

v
does not work well for

captioning, but achieves great performance on the other three tasks. This some-
how contrasts with the results obtained with encoder-only and decoder-only LMs
in Sec. 4.3, where xt � x0

v
leads to one of the best performance on COCO Cap.

The complexity of the multitask learning setup, where different loss functions
are jointly optimized, might here be a confounding factor.
Experiments with multiple Adapters We further explore the behavior of the
routing functions in models with multiple Adapters, where we train a separate
Adapter per task. As also observed in [37], using multiple Adapters increases
the complexity of the model, and yields worse performance compared to using
a single Adapter. As presented in Tab. 8, using the four routing functions with
multiple Adapters leads to comparable or better performance as compared to
multiple Adapters with no routing functions. Moreover, in line with what we
discovered in the experiments with models with a single Adapter, different rout-
ing functions shine on different types of tasks.

In this set-up, we also experiment with combinations of routing functions.
The four combinations integrate the routing functions that work best for each
individual task (e.g . xtx0

v
for COCO Cap.). The results in Tab. 8 evidence that

in this multitask setting combinations of routing functions yield an improved
performance compared to using no routing functions. GQA requires more fine-

11 †: 3 seeds. Appendix C shows that our improvements are significant using paired
t-test with p = 0.05.

1. Consistent improvements especially for COCO Cap.
2. See paper: Combining multiple adapters w/ routing functions
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Routing functions
à help guide the feature learning in low-rank bottlenecks for PEFT.
à work for various types of vision-language models. 
à can potentially be beneficial to more tasks when feature routing is needed.
• Please refer to our paper for more results and detailed analyses.
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