

M I L A N O

Introducing Routing Functions to Vision-Language Parameter-Efficient Fine-Tuning with Low-Rank Bottlenecks

Tingyu Qu, Tinne Tuytelaars, Marie-Francine Moens

())

Background: PEFT with Low-Rank Bottlenecks

- colored modules \rightarrow update
- down-project then up-project:
 - $\rightarrow W_{down}: d \rightarrow r; W_{up}: r \rightarrow d \& r \ll d$
- For uni-modal tasks:
 - compression from W_{down} suffices if r > intrinsic dim. (minimum dim. required)
- For multi-modal tasks:
 - How to balance modalities to enforce alignment with simple linear mapping (W_{down}) ?

→ Route features through the low-rank bottlenecks

Given model hidden states (x_H) and features to be aligned to x_R (e.g. visual features):

Routing functions \triangleright route $W_{down}x_H$ and $W_{down}x_R$ in the **low-rank bottlenecks** \triangleright use **Linear operation with NO extra parameters**

Experiment with Encoder/Decoder-only Language Models

- Encoder-only LM: RoBERTa; decoder-only LM: GPT2
- Generative task: COCO Cap.; discriminative task: VQAv2
- Base PEFT module: Adapter/LoRA

Experiment with Encoder/Decoder-only Language Models

COCO Cap.:

	·				Routing $r = 64$		r = 128			
Routing			LoRA	, r=64		Functions	LoRA	Adapter	LoRA	Adapter
Functions	BLEU-4	METEOR	ROUGE-L	CIDEr	SPICE	None	44.15	44.16	44.45	44.28
None	18.3	17.4	36.8	55.8	11.8	$x_t \circ x'_{a}$	$53.51_{\pm 9.36}$	$52.78_{\pm 8.62}$	$53.86_{\pm 10.4}$	$53.01_{\pm 8.73}$
$x_t \circ x'_v$	$\mathbf{26.1_{+7.8}}$	$\mathbf{23.7_{+6.3}}$	$48.6_{\textbf{+11.8}}$	$\mathbf{88.7_{+32.9}}$	$17.3_{\textbf{+5.5}}$	$x_t + x'_v$	$52.60_{+8.45}$	$53.94_{+9.78}$	$52.88_{+8.43}$	$53.95_{+9.67}$
$x_t + x'_{\underline{v}}$	$22.2_{+3.9}$	$20.3_{+2.9}$	$41.0_{+4.2}$	$73.5_{\pm 17.7}$	$14.8_{+3.0}$	$x_t(x_v)^{T} x_v$	$53.88_{\pm 9.73}$	$54.48_{+10.32}$	$53.09_{+8.64}$	$55.06_{\textbf{+10.78}}$
$x_t(x_v)^T x_v$	$24.8_{+6.5}$	$22.6_{+5.2}$	$45.4_{+8.6}$	$84.9_{+29.1}$	$16.8_{+5.0}$	$x_t x_v''$	$\overline{\mathbf{54.21_{+10.06}}}$	$\overline{54.96_{+10.80}}$	$\overline{51.88_{+7.43}}$	$54.38_{\pm 10.10}$
$x_t x_v''$	$23.9_{+5.6}$	$21.9_{+4.5}$	$43.9_{+7.1}$	$80.5_{\pm 14.7}$	$16.2_{\pm 4.4}$	Compa	rison to cro	ee attanti	00:	
Routing	Adapter, $r=64$									
Functions	BLEU-4	METEOR	ROUGE-L	CIDEr	SPICE	PEFT	Separate Map	. Alignment	Param. BI	LEU-4 CIDEr
None	15.9	18.5	37.0	61.6	14.1	LoRA	\checkmark	Cross-attn.	4.786M 28	.7 92.2
$x_t \circ x'_v$	$24.6_{+8.7}$	$23.1_{+4.6}$	$46.4_{+9.4}$	$84.5_{+22.9}$	$17.2_{+3.1}$	LoRA	\checkmark	$x_t(x_v)^T x_v$	3.932M 30	$.7_{+2.0}$ 99.4 _{+7.2}
$x_t + x'_v$	$\overline{21.0_{+5.1}}$	$\overline{21.5_{+3.0}}$	$42.4_{+5.4}$	$75.0_{\pm 14.4}$	$16.0_{+1.9}$	LoRA	×	$x_t(x_v)^T x_v$	$\mathbf{4.746M}\;30$	$.0_{+1.3}$ 99.0 _{+6.8}
$x_t(x_v)^T x_v$	$26.1_{\pm 10.2}$	$\mathbf{23.2_{+4.7}}$	$\mathbf{46.9_{+9.9}}$	$85.4_{+23.8}$	$17.3_{+3.2}$ ·	$Adapter^{\dagger}$	\checkmark	Cross-attn.	4.732M 30	.7 99.8
$x_t x_v''$	$\overline{26.6_{+10.7}}$	$23.0_{+4.5}$	$46.8_{+9.8}$	$\overline{85.8_{+24.2}}$	$17.2_{+3.1}$	$\operatorname{Adapter}^{\dagger}$	×	$x_t(x_v)^T x_v$	1.830M 30	$.8_{+0.1}$ $98.8_{-1.0}$

VQAv2:

Significant improvements on both generative (COCO Cap.) and discriminative (VQAv2) tasks.
Comparable to cross-attention, with fewer parameters & linear operations

Experiment with Encoder-Decoder Language Models

- Multi-task learning of four VL tasks (VQAv2, GQA, NLVR² and COCO Cap.)
- Single Adapter/LoRA for all tasks:

Routing	Single LoRA								
Functions	VQA	\mathbf{GQA}	$NLVR^2$	Avg.	COCO Cap.				
None [†]	65.15	53.66	72.58	63.80	115.01				
$x_t \circ x'_v$	65.68	53.96	73.42	64.35	113.94				
$x_t + x'_v$	65.14	53.73	73.51	<u>64.13</u>	114.96				
$x_t(x_v)^T x_v$	64.94	53.56	73.60	64.03	117.80				
$x_t x_v''$	64.84	53.13	72.98	63.65	119.26				
Routing	Single Adapter								
Functions	VQA	GQA	$NLVR^2$	Avg.	COCO Cap.				
$None^{\dagger}$	65.76	54.16	73.19	64.37	114.61				
$x_t \circ x'_v$	65.92	54.34	74.23	64.83	114.38				
$x_t + x'_v$	65.89	54.18	73.90	$\underline{64.66}$	114.39				
$x_t(x_v)^T x_v$	65.84	53.65	74.31	64.03	117.65				
$x_{\star}x_{\star}^{\prime\prime}$	65.83	53.61	73.27	64.24	118.86				

1. Consistent improvements especially for COCO Cap.

2. See paper: Combining multiple adapters w/ routing functions

Takeaways

Routing functions

- → help guide the feature learning in low-rank bottlenecks for PEFT.
- → work for various types of vision-language models.
- \rightarrow can **potentially be beneficial to more tasks** when feature routing is needed.
- Please refer to our paper for more results and detailed analyses.

Thank you for your attention

