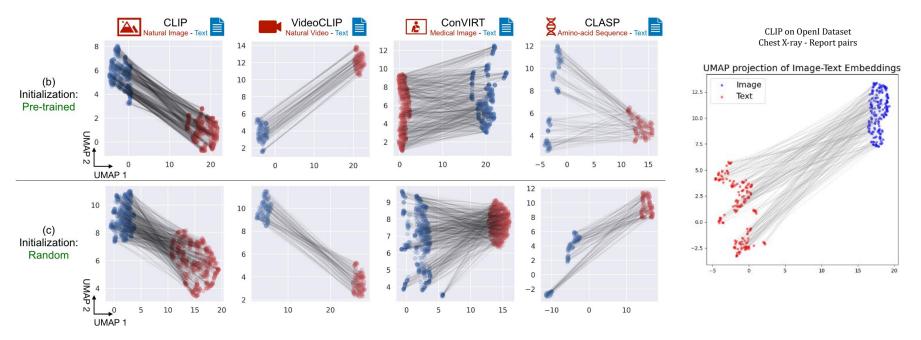
Improving Medical Multi-modal Contrastive Learning with Expert Annotations

Yogesh Kumar[®] and Pekka Marttinen[®]

Department of Computer Science, Aalto University, Finland

Modality Gap in CLIP Embeddings

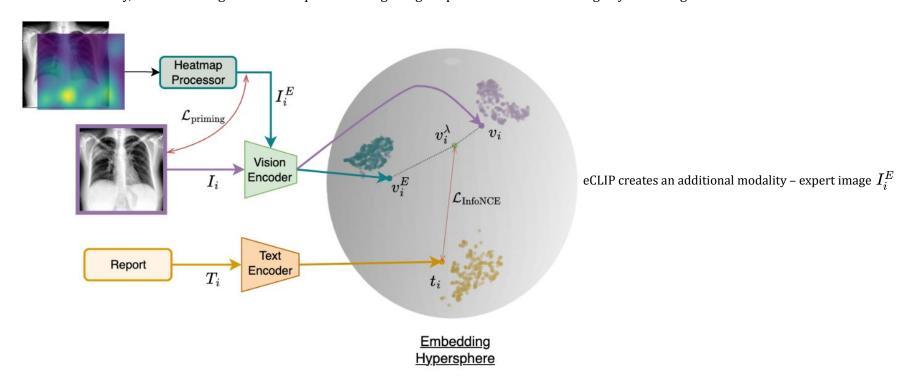
UMAP projection reveals that CLIP embeddings form distinct clusters that pertain to their respective modalities (e.g., images and text)



Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning, Liang et al. 2022

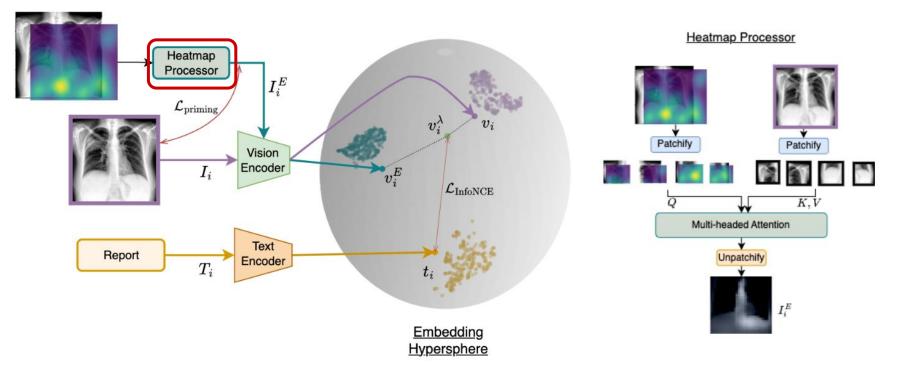
Expert Annotated CLIP - eCLIP

For medical data, pairs of chest X-rays and their corresponding radiologist report form the image-text pairs used for CLIP pretraining
Additionally, we can leverage the heatmaps of radiologist's gaze patterns obtained through eye-tracking



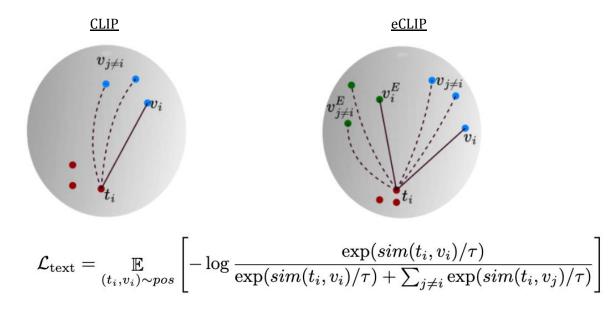
Heatmap Processor

Heatmap processor is a single layer of multi-headed attention used to fuse the eye-gaze heatmaps with X-ray image, forming the "expert image" I_i^E



Additional Image-Text pairs for Contrastive Loss

- eCLIP exploits the modality gap to create additional pairs for contrastive loss using the expert image embeddings v_i^E
- Heatmap processor is crucial to ensure that image embeddings v_i and the expert image embeddings v_i^E are not too similar



Experiments

Model	Dataset			
	Chexpert 5x200	MIMIC 5x200	RSNA	CXR 14x100
$\operatorname{CLIP}_{\operatorname{ViT}\operatorname{Base}}$	$0.540_{\pm .017}$	$0.465_{\pm.004}$	$0.805_{\pm.001}$	$0.183_{\pm.011}$
+naive	$0.506 _{\pm.011}$	$0.426 _{\pm.006}$	$0.805 _{\pm.004}$	$0.151_{\pm.009}$
+DACL	$0.474_{\pm .007}$	$0.400 \scriptstyle \pm .002$	$0.759 _{\pm.001}$	$0.106 \scriptstyle \pm .003$
$+m^3$ -mix	$0.542_{\pm.021}$	$0.465 _{\pm.013}$	$0.798 _{\pm.004}$	$0.183 _{\pm.020}$
+expert (ours)	$0.563_{\pm.021}$	$0.477 \scriptstyle \pm .004$	$0.814 \scriptstyle \pm .003$	$0.193 \scriptstyle \pm .017$

Zero Shot Image Classification (F1-Score)

