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Motivation and Introduction

@ The overall goal of this work is to address the noisy few-shot
learning (NFSL) problems with uniquely designed unsupervised
auxiliary tasks to compensate for information loss.

o Key challenges include:

e Few-shot learning inherently involves a small number of labeled
examples per class. The scarcity of labeled data makes it challenging
for models to generalize well to unseen instances.

o The presence of noisy labels, where the provided annotations may be
incorrect or unreliable, can significantly impact model performance.
Models need to be robust to label noise to effectively learn from the
limited labeled examples available.

e While data cleansing offers a viable solution to address noisy labels in
the general learning settings, it exacerbates information loss in FSL due
to limited training data, resulting in inadequate model training.
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Motivation
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Contributions

@ Our proposed framework Diverse UNsupervised Tasks for NFSL
(DUNT) includes threefold contributions:

e a framework designed to adeptly utilize unsupervised data from a
distinct domain in order to counteract the information loss resulting
from data cleansing in the challenging scenario of NFSL.

e a novel strategy to perform diverse auxiliary task selection to avoid
learning sample-specific spurious features from the unlabeled auxiliary
data samples.

e an in-depth theoretical analysis of the auxiliary tasks introduced in the
DUNT framework, establishing novel generalization bounds, offering
valuable insights into the contributions of these auxiliary tasks.
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Framework Overview
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Figure: DUNT overview: The primary tasks (top) are sampled and cleansed by
episode cleansing, the auxiliary tasks (bottom) are constructed and filtered by

their diverseness.
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Learning from Primary Tasks: Episode cleansing

@ To remove the noisy labels in the query sets, episode cleansing
designs a self-paced sample weight for each example pair:

Wik = 1(4( < Yth),

o (f = {(fy(xF),yf) is the loss value of k-th example pair (xf, y/) in
task 7;

e 1(-) is an indicator function whose value is 1 when ¢¥ < ~,, and 0
otherwise

@ 7 is a predefined hyperparameter used to filter out high-loss examples

o The classification loss L7:(0}, S7¢) becomes
Sque k pk
ET(fH,US,q ) = Z wi L, (1)
gy

@ For support set, meta-model is used to compute the loss values and
remove the noise in the support set.
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Learning from Diverse Unsupervised Tasks

@ Construction of an unsupervised N-way 1-shot auxiliary task 7;:

o first randomly sampling N images from the dataset D" for the
support set S;"° = {XJ’-‘}LV:l;

o the query set S = {Al()&’.‘), ...,AQ(XJ’-‘)}L\’Zl is obtained by
augmenting the N images in Q different ways, where A;(-), .., Ag(:), A
denote different augmentation techniques, such as random cropping,
translation, flipping.

@ The auxiliary loss is the summation of the contrastive loss of a series
of auxiliary tasks:

L3ux — Z Eﬁ(9781§up’sjgue)’ (2)
ﬁ(sjup,sﬁue)NDaux

exp(—d[fy(Aq(xk)), fy(xk
L (0 SSUP Sque _ ZZ p [‘9( ( )) ( )])
k 1g=1 Z/ 1 exp(—d[fa(Aq ( ), fg(X )
(3)
where d[-,-] is a distance metric, such as Euclidean distance.
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Diversity Criterion

@ Given two images xJ’-‘

, xJ’-, the model parameterized by 6 lead to class
probabilities vectors pj’f = softmax(ﬁ(xj’-‘)) and pJ’- = softmax(@(le-)).

o If the two images are from the same class, pJ’-‘ and pj’- are naturally
encouraged to be close to each other.

@ Diversity criterion:
1 -1 N
divi = ———
i C(N,?2) < Z cos(

e C(N,2) = ﬁ is the 2-combination of set N.
o According to the definition, the higher the value of div;, the more
diverse the task.

9/14



Adversarial Training and the Critic Head

@ To enforce the learning of the domain-invariant representation of the
meta-model, we propose a critic model 6¢ to discriminate the source
of the input data, either primary or auxiliary.

@ By training the model in an adversarial way, the critic model 6¢€ try to
distinguish which domain that the input features come from, while
the meta-model # aims to confuse the critic. Formally, the overall
adversarial objective is a min-max problem as follows:

minmax oy £ + (1 — a1) L2 + az€(6,67, D, D), (4)
b ¢ 9

where the critic model 69 assigns 1 to the example from the primary
domain and 0 otherwise based on the feature representation extracted
by 6. £(-) is the adversarial loss.
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Results on Non-Transductive Setting

@ Our method outperforms the baselines across different few-shot
benchmark datasets.

Table 1: Non-transductive auxiliary datasets

Methods CUB mini mini-CUB tiered  CIFAR-FS
Task 5-way 1-shot
PN+SPL|48.55 + 151 43.44 + 140 37.06 + 0.63 42.11+ 01 55.20 + o.60
PN-+FSR|37.14 + 060 44.81 + 050 39.82 + 0.6s 30.65 + 0.49 37.39 + 0.63
RNNP 55.39 + 049 50.18 + 0.62 41.75 + 0.72 43.76 + 0.as 60.15 + 0.72
TraNFS |53.02 + 052 46.66 + 0.3 38.25 4+ 0.79 40.32 + 0.ss 60.86 + o.63
DCML | 54.39 + os7 49.33 + 122 41.77 + 080 48.33 £ 050 60.28 + o0.52
DUNT |[56.94 & 1.03 52.22 1 1.1043.01 + 0.51 49.12 + 0.6s 62.80 + 0.40
Task 5-way 5-shot
PN+SPL|68.47 + 074 58.67 + 086 54.94 4+ 1.03 59.62 + 131 70.93 + .83
PN-+FSR|51.48 + 0.01 61.89 + 0.s0 57.38 +1.10 50.40 + 1.21 44.68 + 1.00
RNNP 70.37 + 133 63.57 + 1.28 58.79 + 2.36 55.07 + 1.21 T4.31 + 1.36
TraNFS |68.77 + 117 61.06 + 113 51.24 4+ 1.16 48.74 + 120 T4.15 + 0.83
DCML |71.28 + 123 62.77 + 100 57.77 4133 61.19 + 1010 72.33 4 0.00
DUNT |72.17 + 111 65.10 + 123 58.50 + 1.11 62.01 + 1.00 74.44 + 1.42
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Results on Transductive Setting

@ Our method outperforms the baselines across different few-shot
benchmark datasets.

Table 2: Transductive auxiliary datasets

Methods CUB mini mini-CUB tiered CIFAR-FS
Task 5-way 1-shot
PN+Co 49.10 + 121 44.44 + 006 36.48 + 0.0s 40.36 + 0.51 52.51 + 092
PN+Co+ [49.45 + 110 45.08 + 0.01 39.54 + 100 40.19 + 110 51.27 + 111
STARTUP|52.02 + 1.20 48.79 + 115 40.08 + 1.22 44.48 + 0.2 60.69 + 1.3:1
DDNet 52.55 + 1.30 50.82 + 0.7 41.11 + 189 45.11 + 1.33 60.25 + 1.46
DUNT 55.01 + 1.12 52.38 + 0.85 42.07 + 1.10 49.29 + 1.26 61.90 + 1.14
Task 5-way 5-shot
PN+Co 65.42 + 122 59.57 + 120 56.90 + 120 55.10 + 1.21 66.89 + 126
PN+Co+ |67.92 + 111 60.43 + 115 54.29 + 1.10 54.54 + 084 67.22 + o711
STARTUP|68.74 + 121 62.00 + 1.24 51.07 + 1.00 55.92 + 0.00 74.04 + 0.84
DDNet 69.21 + 131 63.70 + 200 53.87 + 0.4a 57.22 + 075 73.92 + 120
DUNT 71.20 + 1.12 66.46 + 0.98 59.05 + 1.01 61.09 + 0.90 76.11 + o.0s
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Effectiveness of task selection.

@ We study the impact of task selection through the threshold ~gj, .
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Conclusion

@ In this work, We propose a novel FSL framework with auxiliary tasks
that utilize carefully selected unlabeled data under noisy settings.

@ In DUNT, we introduce episode cleansing for examples in the primary
task and adopt a diverse task selection strategy for the unsupervised
auxiliary tasks to enhance robustness against label noise. To better
align the auxiliary distribution with the primary one, we propose a
regularization term based on the Wasserstein distance for learning a
domain-invariant representation.

@ Our framework is theoretically and experimentally proved to be
effective and beneficial.
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