

Self-Cooperation Knowledge Distillation for Novel Class Discovery

Yuzheng Wang, Zhaoyu Chen, Dingkang Yang, Yunquan Sun, Lizhe Qi

Shanghai Engineering Research Center of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, China

Outline

- 1. Background
- 2. Motivations
- 3. Proposed Method
- 4. Experimental Results
- 5. Conclusion

1. Background

The purpose of the Novel Class Discovery task:

- \triangleright Retain the model's cognition of known \vert ^{cat} class samples
- \triangleright Promote the model's learning of unfamiliar novel class samples

Training samples:

 \triangleright Known class samples with labels \triangleright Novel class samples without labels

Evaluation:

\triangleright Accuracy

 \triangleright Clustering accuracy

Motivations: Existing NCD methods focus on establishing a shared representation space for known and novel instances or classes. However, a long-neglected issue is the imbalanced number of samples from known and novel classes pushes the model toward the dominant party, making it challenging to trade-off between reviewing known **2. Motivations**
Motivations: Existing NCD methods focus on estal
instances or classes. However, a long-neglected issued
asses pushes the model toward the dominant party
classes and discovering novel classes.

Analysis:

Inter-instance methods aim to explore relationships among instances via contrastive learning, rank statistics, consistency and regu larization, and example mixing.

Inter-class methods aim to explore relationships among multiple classes.

Can we use all sample information to review known classes and discover novel classes simultaneously?

3. Proposed Method

3. Proposed Method

Preliminaries:

A mini-batch training set:

$$
\begin{aligned} D^l &= \left\{(\boldsymbol{x}_1^l, \boldsymbol{y}_1^l), \ldots, (\boldsymbol{x}_N^l, \boldsymbol{y}_N^l)\right. \\ D^u &= \left\{\boldsymbol{x}_1^u, \ldots, \boldsymbol{x}_M^u\right\} \\ \mathcal{Y}^l &= \left\{1, \ldots, C^l\right\} \end{aligned}
$$

Two classification heads:

$$
\bm{l}_i\,=\,\left[h^l(E(\bm{x}_i)),h^u(E(\bm{x}_i))\right],\bm{l}_i\,\in\,\mathbb{R}^{C^l+C^u}
$$

 $\}$

Similarity Score Matrix:

$$
\boldsymbol{v}^l\,=\,E^r(\boldsymbol{x}^l), \boldsymbol{v}^l\,\in\,\mathbb{R}^{N\times k} \\\\ \boldsymbol{v}^u=E(\boldsymbol{x}^u), \boldsymbol{v}^u\in\mathbb{R}^{M\times k}
$$

$$
S_{ij} = \cos (\boldsymbol{v}_i^l, \boldsymbol{v}_j^u), i = 1, \dots, N \text{ and } j = 1, \dots, M.
$$

$$
S = \text{Norm}(S) = \frac{S}{|max\{S\}|}, S \in \mathbb{R}^{N \times M}.
$$

Pseudo-Label Synthesis:

$$
\hat{\mathbf{l}}_{uh}^{u} = \alpha \cdot S^{T} \cdot \mathbf{l}_{uh}^{l}, \quad \hat{\mathbf{l}}_{uh}^{u} \in \mathbb{R}^{M \times C^{u}},
$$

$$
\hat{\mathbf{l}}_{kh}^l = \alpha \cdot S \cdot \mathbf{l}_{kh}^u, \ \hat{\mathbf{l}}_{kh}^l \in \mathbb{R}^{N \times C^l}.
$$

Self Knowledge Distillation Objectives:

$$
\mathcal{L}_{k \to n} = \frac{1}{M} \sum_{1}^{M} KL(l_{uh}^{u}, \hat{l}_{uh}^{u}), \quad \mathcal{L}_{n \to k} = \frac{1}{N} \sum_{1}^{N} KL(l_{kh}^{l}, \hat{l}_{kh}^{l}).
$$

\n
$$
\mathcal{L}_{SCKD} = \mathcal{L}_{k \to n} + \mathcal{L}_{n \to k}.
$$

\n
$$
\mathcal{L} = \mathcal{L}_{CE} + \beta \cdot \mathcal{L}_{SCKD},
$$

4. Experimental Results

Performance Comparison

Table 2: Comparison with state-of-the-art methods on the unlabeled training subset, using task-aware evaluation protocol. Bold and underline numbers denote the best and the second best results, respectively.

Table 3: Comparison with state-of-the-art methods on the testing subset, using taskagnostic evaluation protocol.

Table 4: Experimental results with an increasing number of unlabeled classes on CIFAR100. Results are reported on the testing subset about both known and novel classes (averaged over 3 runs), using the task-agnostic evaluation protocol.

4. Experimental Results

Table 6: Ablation study of our method for four dataset splits on the unlabeled training subset, using task-aware evaluation protocol. Results contain clustering accuracy (ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI) that

Ablation study about are averaged over 3 runs. training losses

Ablation study about similarity score matrix

Table 7: Ablation study about the similarity score matrix S . All results are evaluated on the unlabeled training set.

Fig. 4: t-SNE visualization for known and novel classes on CIFAR100-50 testing set, using taskagnostic evaluation protocol.

5. Conclusion

- We consider a practical but long-neglected challenge in the NCD task, i.e., the imbalanced number of samples from known and novel classes, making it difficult to balance reviewing known classes and discovering novel classes.
- We propose a simple yet effective SCKD method. SCKD can associate every sample for simultaneously reviewing known classes and discovering novel classes by building a cooperative learning paradigm.
- Extensive experiments on six benchmark datasets for novel class discovery show that the proposed method performs competitively and outperforms the state-of-the-art methods, demonstrating the effectiveness of SCKD.

Thanks !