CipherDM: Secure Three-Party Inference for Diffusion Model Sampling
Xin Zhao'23, Xiaojun Chen23" Xudong Chenl23,

He Lit%3 Tingyu Fan %3 and Zhendong Zhao'23

1School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
?Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3Key Laboratory of Cyberspace Security Defense, Beijing, China

OpenAI

ChatGPT

STABLE

DIFFUSION

Explain the mechanism of diffusion models.

Diffusion models are a type of generative model that generate data (e.g., images, audio, etc.)
by reversing a gradual, noisy process. The general idea is to learn to denoise data
progressively. These models are popular for their ability to generate high-quality images and
other types of complex data.

Basic Mechanism of Diffusion Models
1. Forward Process (Diffusion Process):

« This process starts with clean data (e.g., an image) and progressively adds noise to it
over several time steps, making the data increasingly noisy until it turns into pure
noise (e.g., Gaussian noise).

« Let oy be the original data (e.g., an image). At each step ¢, noise is added according
to a pre-defined noise schedule to produce a sequence of data @, @a, ..., x7,

where 7 is almost pure noise. The forward process typically follows a Markov chain,
and the transformation at each step is simple, often modeled as:

2= +/1— B2+ /B -,

)
\ RS
‘*ﬁ‘

a
& Ha((gvffgen

~

I’ m a student. | need help for '
my course paper: how to --- .

Please change the background
color of my ID photo.

!

AN
—

Train and upload the model
to the websites.

F(A,B,C)

N/
|8 —am

F(A,B,C) F(A,B,C) F(A,B,C)

Central Trusted Authority Secure Multiparty Machine Learning

A
' Protected Data Fields

residual block (relu) residual block (silu) residual block (mish)
57% 31% 56% 31% 9% 38%
M attention relu other M attention silu other M attention mish other

Fig. 1: Module running time percentage of residual block in plaintext.

Contributions:

latency breakdown (relu) latency breakdown (silu) latency breakdown (mish)

40% 46% B ..
16% 84% 12% 88% 9% 91%
0% 54%
7% 28%
other modules exp
other modules = exp = other operations other modules = exp = other operations other operations log_plus_one

tanh

Fig. 2: Latency breakdown of total workflow in ciphertext.

* Secure DM Sampling: We first leverage MPC technology to ensure confidentiality and privacy

of the sampling phase.

* Unified Secure DM: It’s confirmed that MPC can be effectively implemented on commonly

used DMs, including DDPM, DDIM and SD.

* Optimized Secure Nonlinear Operators: Efficient activation protocols (SoftMax, SiLU and Mish)

are specifically designed for DMs.

4 / \
Model Provider MPC Engine
e.g.5SPU
— @ S Wo, Inference
— Wy, Wa, W3 f & Wit
[- G
—— private model 2
parameters
p
------ : cecret Sharir g O O
.E / Secret Sharing Xy, X2, X3
private input W2, X2 O W3, X3
o)
T = |
y A N
| ‘ Y1.¥2,¥Y3 xoj— ¢—xt l/\ﬂ—l\i{'{/h— "_0—@._1:/:
output Diffusion Sampling
Client Postprocessing Resh.ﬂ.rin.g
\\ \ /

Fig. 3: An illustration of our proposed CipherDM framework. CipherDM takes model
parameters and images/texts as two private inputs, preprocesses them locally, secretly
shares them to a three-party MPC Engine, and receives the final sampling result from
it. MPC systems such as SPU involve the joint computation.

Secure SoftMax

Table 3: The coefficients and Chebyshev polynomials of exponential function.

1 0 1 2 3 4 5 6 7
0, x < Texp C;(0.)[14021878|27541278|22122865|14934221|09077360|04369614|02087868|00996535
negExp(x) — T;(z) |1 x 277 — 1 [42° — 3z |82 —[162° —[322° —|642" —
Chebyshev(x),x € [Texp, 0] 82 +1 |202°+5z|482* +|1122° +
18247 — 1 |562° — Tz
Algorithm 1 Secure SoftMax Protocol [[q,ax
Input: P; holds the 2-out-of-3 replicate secret share [x] for i € {0,1,2}, and x is a
ChebyShev(X) vector of size n.
— COTO (xt) + C1T1 (xt) + ...+ C7T7 (xt) Output: P, gets the 2-out-of-3 replicate secret share [y] for i € {0,1,2}, where

y = SoftMax(x).
1. Py, Pi, P jointly compute [b]® = [[.p(Texp,[x]) and the maximum [Z] =
I Tngax (IXD)-
Locally compute [x] = [x] — [X] — € and [t] = =2 * ([X] — Texp) * Tl — 1.
fori=23,..,7 dq . _

Jointly compute [t'] = [T, ([t' '], [t]) and [T;(t)] based on [t'] as Tab.
end for
Locally compute [z] = Z;O Cj[Tj(t)] and [z] = >_p_,[=[K]-
Jointly compute [1/z] = [[g..p([2]) and [z/2] = [Ty, ([2], [1/2]).
return [y] = [Ty, , (117 [2/2)).

Secure Activations

{ Fy(z) = —0.0142016322 — 0.16910363x — 0.52212664
SiLU

Fi(z) = 0.000080322°% — 0.00602401z* + 0.197845962% + 0.49379432z (6)
+0.03453821

Mich { Fo(x) = —0.0157201922 — 0.183755352 — 0.55684445
is

Fy(z) = 0.000107862% — 0.00735309z* + 0.20152583z2 + 0.54902050z (7)
+0.07559242

.
0,x < —6
i . Fo(.'X'), —-6<x< -2
Actwatlon(x) = < F (x) 2 < x <6 Algorithm 2 Secure SiLU and Mish Protocol [[g;rv/1 Tyisn
1 ’ - Input: P; holds the 2-out-of-3 replicate secret share [z] for ¢ € {0,1,2}.
L X, x> 6 Output: P, gets the 2-out-of-3 replicate secret share [y] for i € {0, 1,2}, where

y = SiLU(x)/Mish(x).
1: Py, P1, P, jointly compute [bo]Z, [0:1]7, [b2]® and [z0]7, [21]7, [22]® where
[bo]© = [Tor([2], —6), [0:]° = [Tor([2]. —2), [62]° = [(6, [2]),
[20]7 = [bo]” @ [0:]7, [21]” = [1]7 @ [b2]" ® 1, [22]7 = [b2]".
Note that zp = 1{—6 <z < —2},z = 1{-2 <z <6} and 2z, = 1{z > 6}.
2 Jomtly compute [1°] = Tapee(leDs [= Hsquue(l?), and [2°] =
HMul([[m2]]r [[$4]])- _
3: Locally compute polynomials [Fy(x)] and [F1(x)] based on [z'] as Eq. @ / Eq. .

4: return

[] = Tntutg (2017, [F0(2)]) + Ttaig (B11 7, [F2 (@)D + Tty ([22] 7 [2]).-

Tablel: Total time costs of sampling one single image.

Framework ReLU SiLU Mish
Local LAN Local LAN Local LAN
CPU 373 377 370 369 372 376
DDPM SPU 9879 17265 13054 24042 17698 31002
CipherDM | 9473 16669 9688 17915 9520 16686
Improv. 1.043x 1.037x | 1.347x 1.342x | 1.859x 1.858x
CPU 28 27 28 27 28 28
DDIM SPU 587 949 808 1250 1047 1781
CipherDM | 534 910 648 1088 576 979
Improv. | 1.099x 1.043x | 1.247x 1.241x | 1.818x 1.819x

Table2: MPC time and communication costs of sampling one single image.

Framework ReLU SiLU Mish
Time Comm. | Time Comm.| Time Comm.
Local SPU 7076 186.18 9794 268.04 | 14295 391.11
(DDPM) CipherDM | 6069 198.61 7278 198.72 6405 230.33
Improv. 1.166x 0.937x | 1.346x 1.349x | 2.232x 1.698x
LAN SPU 14816 186.10 | 20679 268.04 | 27586 391.07
(DDPM) CipherDM | 12174 198.40 | 14583 198.84 | 12660 230.31
Improv. | 1.217x 0.938x | 1.418x 1.348x | 2.179x 1.698x
Local SPU 492 9.13 712 13.42 957 19.84
(DDIM) CipherDM | 413 10.00 474 11.07 411 11.07
Improv. | 1.191x 0.915x | 1.502x 1.212x | 2.328x 1.791x
LAN SPU 855 9.13 1260 13.44 1678 19.85
(DDIM) CipherDM 789 9.56 907 11.08 795 11.09
Improv. | 1.084x 0.917x | 1.389x 1.213x | 2.111x 1.790x

Table3: Time costs of U-Net in Flax Table4: FID of 10k images generated by

Stable Diffusion from Diffusers. CPU and CipherDM in plaintext.
Numsteps | CPU | SPU | CipherDM | Improv. FID ReLLU SiLU Mish
1 44 | 8332 7711 1.081x CPU 110.13 | 79.46 | 86.24
5 81 | 8856 8208 1.079x CipherDM | 272.26 | 252.12 | 202.64
Fig4: Images generated by CPU and Fig5: The impact of each module on
CipherDM. total time improvement.
CipherDM o

80%

ReLU .E.n .ﬂnu
s A EXrd
vish CSJCZANAEA FIZIEINA p ™

RelLU SiLU Mish
M Secure SoftMax Secure Activation Secure TEmbedding

60%

40%

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10

