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Contributions:
• Secure DM Sampling: We first leverage MPC technology to ensure confidentiality and privacy 

of the sampling phase. 
• Unified Secure DM: It’s confirmed that MPC can be effectively implemented on commonly 

used DMs, including DDPM, DDIM and SD.
• Optimized Secure Nonlinear Operators: Efficient activation protocols (SoftMax, SiLU and Mish) 

are specifically designed for DMs.





Secure SoftMax

𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 𝑥
= 𝐶0𝑇0 𝑥𝑡 + 𝐶1𝑇1 𝑥𝑡 +⋯+ 𝐶7𝑇7(𝑥𝑡)



Secure Activations

Mish

SiLU



Table1: Total time costs of sampling one single image.

Table2: MPC time and communication costs of sampling one single image.



Table3:  Time costs of U-Net in Flax
Stable Diffusion from Diffusers.

Table4:  FID of 10k images generated by 
CPU and CipherDM in plaintext.

Fig4:  Images generated by CPU and 
CipherDM.

Fig5: The impact of each module on 
total time improvement.
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