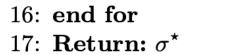


UNIT: Backdoor Mitigation via Automated Neural Distribution Tightening

UNIT Overview

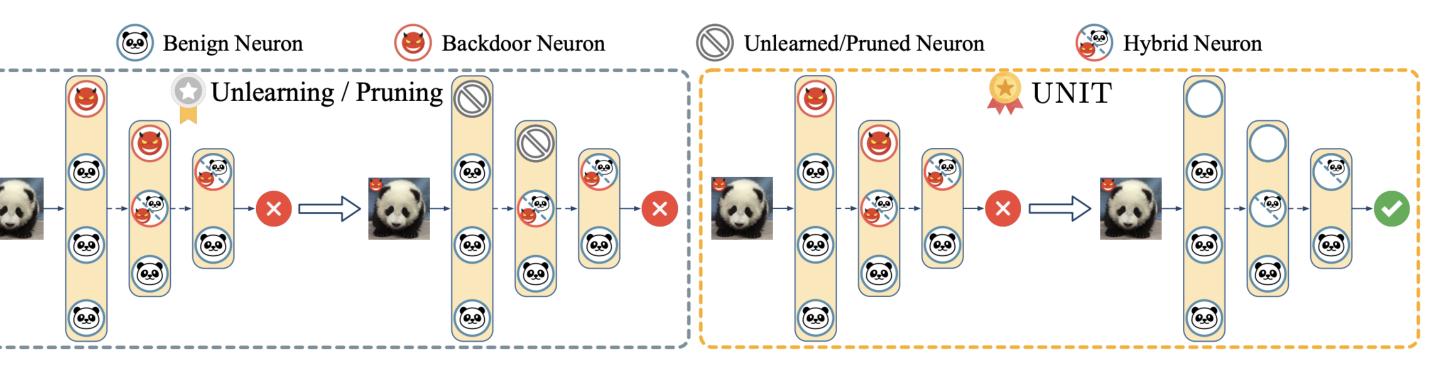


Detailed Algorithm

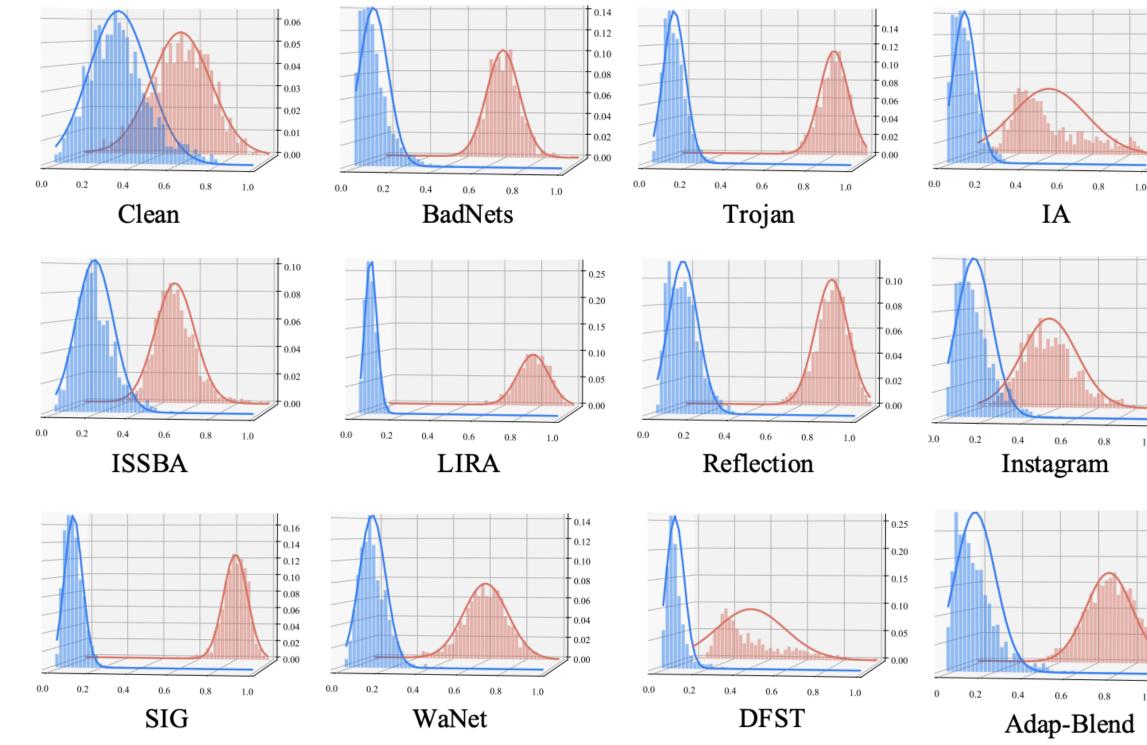
Algorithm 1 Automated Neural Distribution Tightening

1: Input: Subject model M, Accuracy drop expectation ϵ , Training data $\{(x_i^t, y_i^t)\}_{i=1}^{n_t}$, Validation data $\{(x_i^v, y_i^v)\}_{i=1}^{n_v}$, Initial benign distribution boundary σ_0 , Initial tradeoff coefficient α_0 , Optimization steps S, and Learning rate η .

2: Initialize:
$$\sigma = \sigma^* = \sigma_0$$
, $\alpha = \alpha_0$
 \succ Calculate original accuracy on validation samples
3: $P_0 = \frac{1}{n_v} \sum_{i=1}^{n_v} \mathbb{1}(M(x_i^v) = y_i^v)$
4: for $s = 1$ to S do
 \succ Cross-entropy loss plus boundary penalty
5: $\mathcal{L} = \frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L}_{CE}(M_{\sigma}(x_i^t), y_i^t) + \alpha \cdot ||\sigma||_1$
6: $\sigma = \sigma - \eta \cdot \frac{\partial \mathcal{L}}{\partial \sigma}$
 \succ Calculate accuracy when applying current bound
7: $P' = \frac{1}{n_v} \sum_{i=1}^{n_v} \mathbb{1}(M_{\sigma}(x_i^v) = y_i^v)$
8: if $P_0 - P' > \epsilon$ then
9: $\alpha = \alpha/2$
10: else
11: $\alpha = \alpha \cdot 2$
12: end if
 \succ Update the best boundary value
13: if $P' \ge P_0 - \epsilon$ and $||\sigma||_1 < ||\sigma^*||_1$ then
14: $\sigma^* = \sigma$
15: end if
16: end for

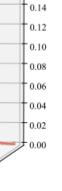


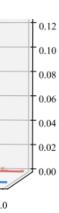
Siyuan Cheng^{*}, Guangyu Shen^{*}, Kaiyuan Zhang, Guanhong Tao, Shengwei An, Hanxi Guo, Shiqing Ma[‡], Xiangyu Zhang


Limitation of Existing Backdoor Mitigation Methods

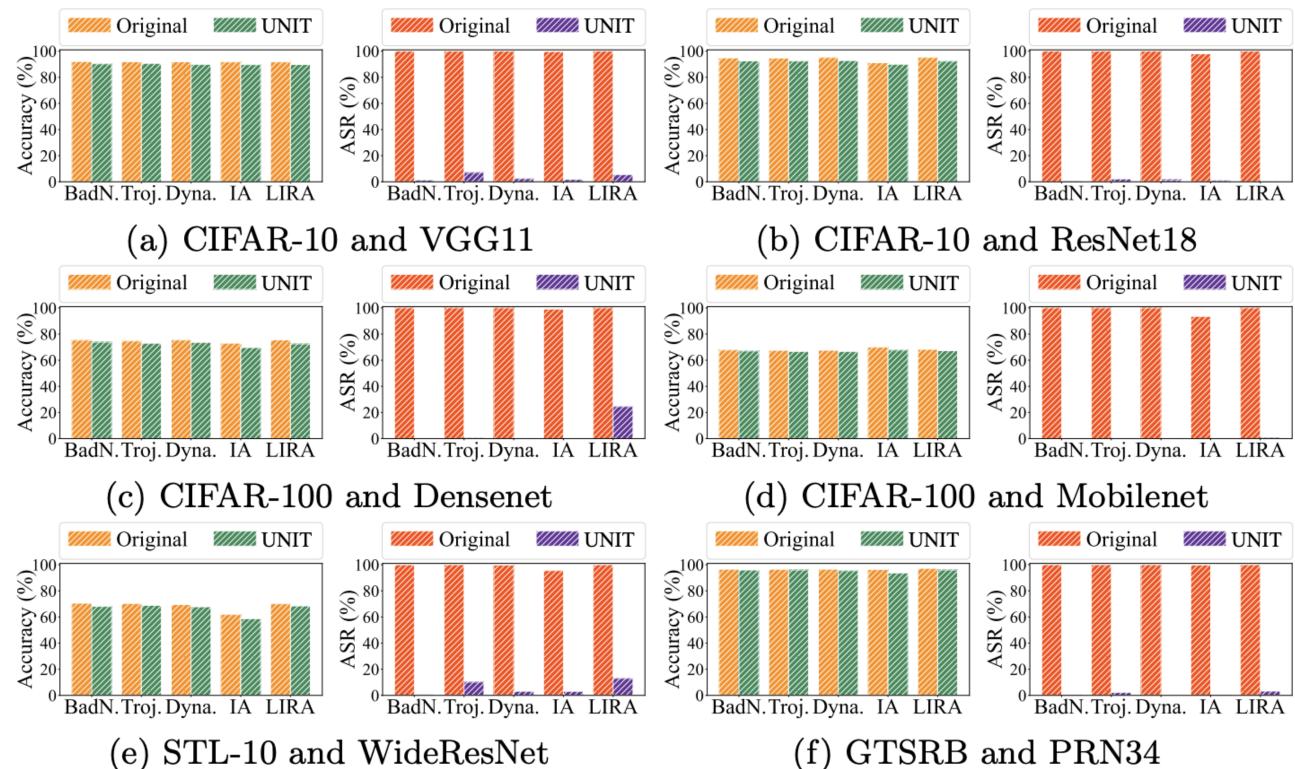
Existing methods either retrain the entire model without precise guidance for reducing backdoor effects or directly prune some specific neurons.

Advanced backdoor attacks tend to hide backdoor behavior within benign neurons that primarily process normal features.




Neural Activation for **Benign** and **Poisoned Samples**

denotes equal contribution



Evaluation Results

Table 1: Comparison of UNIT with 7 backdoor mitigation baselines against 14 backdoor

 attacks. Results are measured in percentages (%). All methods have access to 5% of the clean training data. The best results are highlighted in bold.

Attacks	Original		\mathbf{FT}		FP		NAD		ANP		NC		I-BAU		SEAM		UNIT	
	Acc.	ASR	Acc.	ASR	Acc.	ASR	Acc.	ASR	Acc.	ASR	Acc.	ASR	Acc.	ASR	Acc.	ASR	Acc.	ASR
$\operatorname{BadNets}$	94.82	100.0	90.91	9.78	89.68	3.52	92.41	4.79	91.35	3.26	93.04	0.34	91.60	3.66	91.61	1.05	92.48	0.78
Trojan	94.73	100.0	91.63	35.11	90.76	31.14	91.52	22.30	92.37	58.88	91.89	4.01	90.73	11.58	92.28	12.69	92.38	2.17
CL	94.58	98.46	90.34	58.72	87.71	3.69	88.47	4.42	89.92	18.18	90.72	1.79	88.75	5.52	92.02	23.04	92.21	1.09
Dynamic	95.08	100.0	89.11	9.29	84.93	3.23	89.26	2.34	91.99	3.09	92.09	1.78	92.48	1.63	92.61	3.22	92.77	1.54
IĂ	91.15	97.96	88.44	2.92	89.71	82.20	88.51	2.67	89.05	5.49	89.32	1.12	89.79	62.45	89.77	1.23	89.93	1.03
Reflection	93.29	99.33	91.38	574.77	89.68	84.51	90.99	52.97	90.66	93.28	91.38	93.31	89.94	87.85	90.54	21.37	91.44	6.63
SIG	94.97	99.80	91.29	63.94	90.88	1.03	91.69	10.46	90.80	36.79	91.70	97.88	91.51	22.11	92.57	0.68	92.48	1.74
Blend	94.62	100.0	90.68	7.30	91.47	2.01	91.62	3.32	91.04	16.79	91.90	1.53	91.43	3.61	91.38	1.80	91.99	1.18
WaNet	94.36	99.80	90.32	2.85	91.48	1.48	92.36	1.91	91.99	0.61	90.60	0.97	89.67	12.01	91.34	1.44	91.02	2.44
ISSBA	94.55	100.0	91.40	4.17	90.79	2.11	92.45	2.43	92.42	2.98	92.52	0.46	83.03	84.58	91.17	3.00	91.84	1.57
LIRA	95.11	100.0	91.42	15.09	89.58	14.76	91.64	2.06	91.98	47.91	92.11	1.17	92.18	12.65	92.18	3.02	92.29	0.58
Instagram	94.62	99.59	91.40	29.25	90.38	8.03	89.50	7.17	90.10	5.10	90.19	15.88	89.25	7.24	91.35	5.89	91.43	4.98
DFST	93.25	99.77	90.88	35.22	90.66	14.03	91.05	14.59	89.70	20.51	91.22	24.77	89.12	6.19	91.22	12.93	91.64	4.02
Adap-Bl.	94.22	82.80	90.15	48.76	87.62	31.36	90.42	49.50	90.80	69.51	90.33	18.25	90.81	19.97	89.58	24.19	90.84	15.03
Average	94.26	98.39	90.57	28.37	89.67	20.22	90.85	12.92	91.01	27.31	91.36	18.80	90.02	24.36	91.48	8.08	91.77	3.20

(e) STL-10 and WideResNet

