

ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction

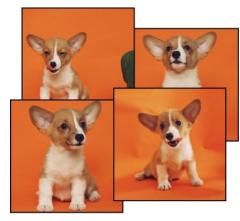
Shaozhe Hao, Kai Han, Zhengyao Lv, Shihao Zhao, Kwan-Yee K. Wong The University of Hong Kong

Diffusion models can learn visual concepts

Textual Inversion [Gal et al. 2022]

"Crochet *S*_{*}"

DreamBooth [Ruiz et al. 2022]



Input images

in the Acropolis

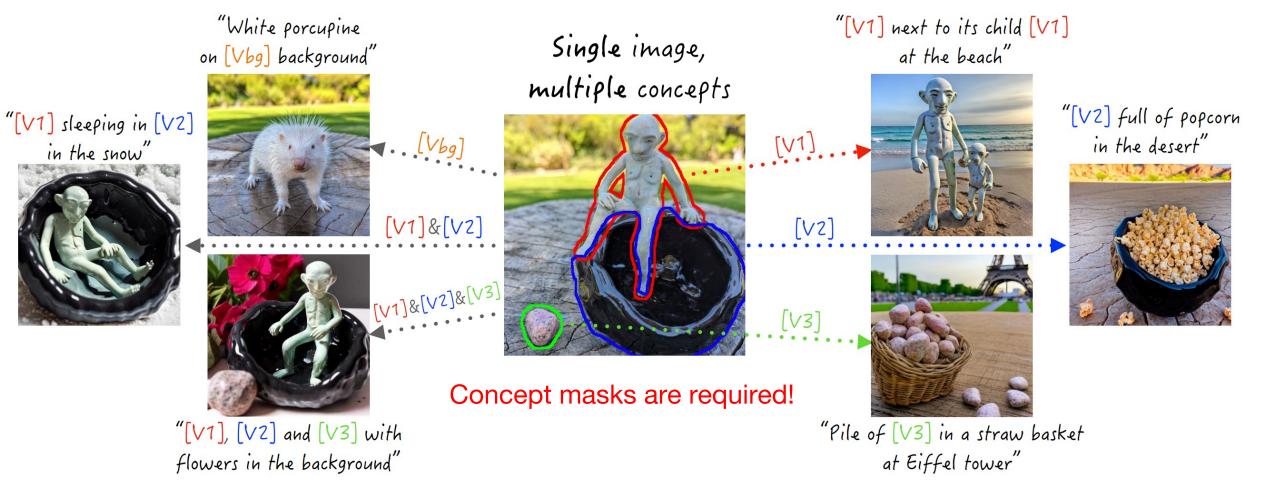
in a doghouse

the same pose as S_* "

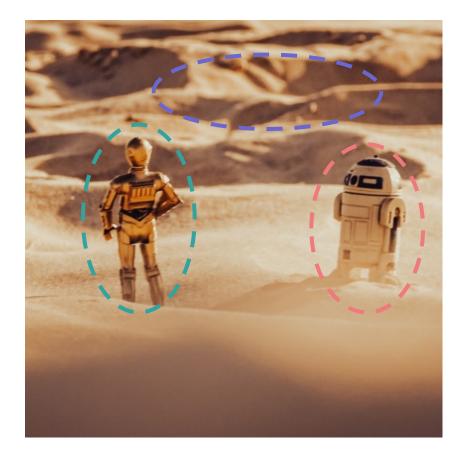
getting a haircut

Learn multiple visual concepts from a single image?

Break-A-Scene [Avrahami et al. 2022]



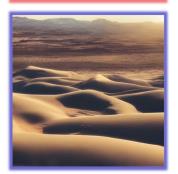
Unsupervised concept extraction (UCE)



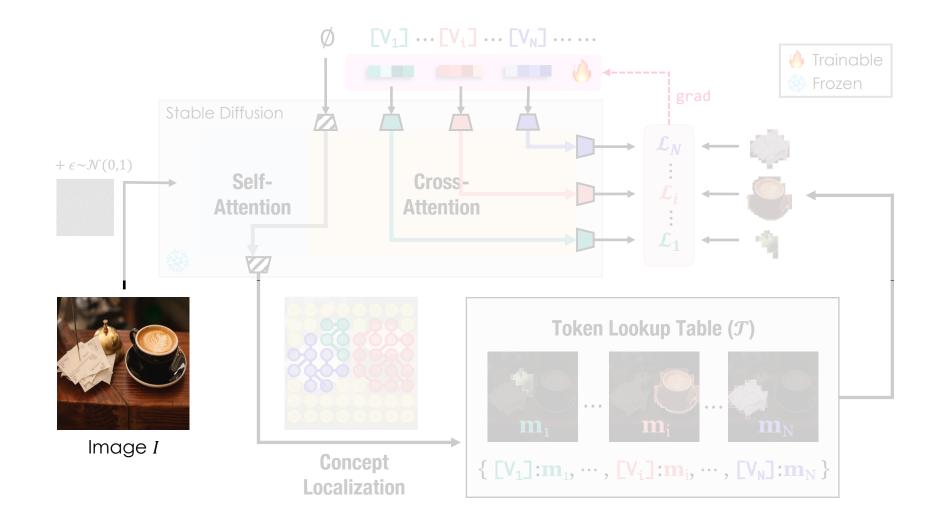
Given a single image, can we extract the visual concepts in it without any information (unsupervised)?

By "**Unsupervised**", we mean:

- No concept descriptors
- No object masks
- No instance numbers



ConceptExpress



ConceptExpress - Concept localization

Cluster on self-attention map: Aggregate semantically close patches.
Filter background: Use [EOT] token to filter out background patches.
Automatic stopping point: Obtain final concept masks and feature maps.

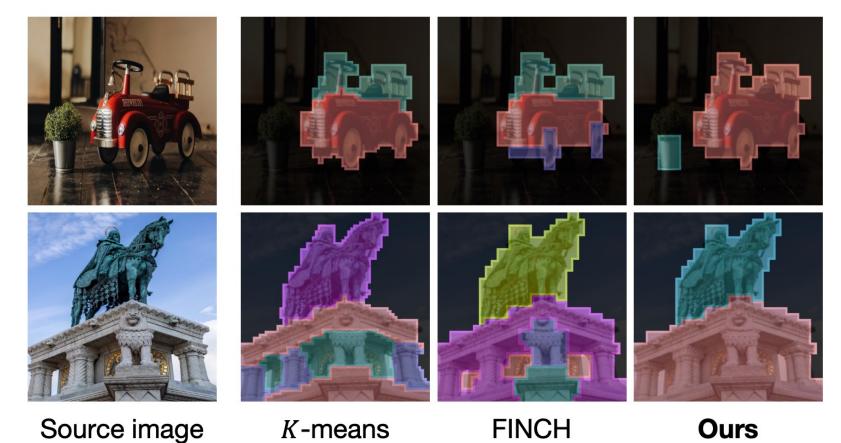
Pre-clustering

Filtering

Post-clustering

ConceptExpress - Concept localization

Localization results using different (clustering) methods



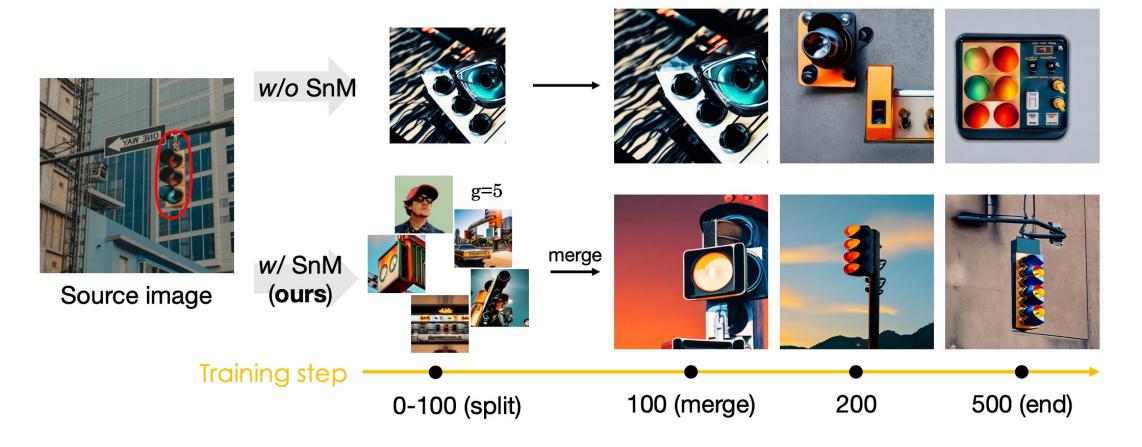
ConceptExpress - Concept learning

We are not accessible to initial words for concepts! > Split-and-merge strategy

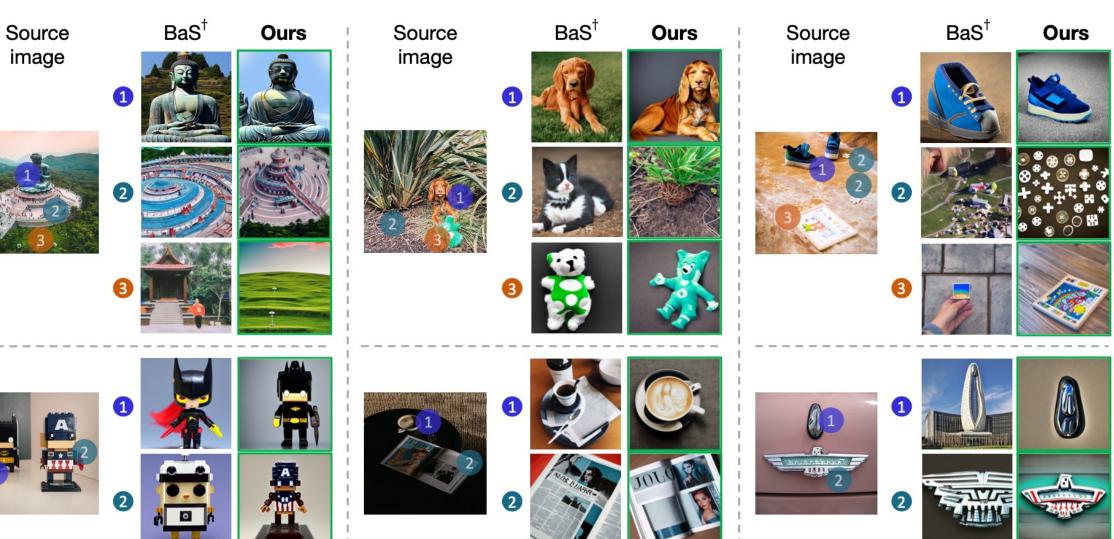


ConceptExpress - Concept learning

w/ SnM v.s w/o SnM



Qualitative results



BaS[†] denotes unsupervised version of Break-A-Scene [Gal et al. 2022].

Quantitative Evaluation

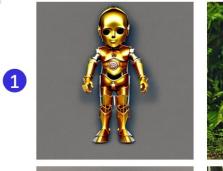
• Data

- D1: 96 images self-collected from Unsplash.
- D2: 7 images provided by Break-A-Scene [Gal et al. 2022].
- Metric
 - **Concept similarity**: identity similarity (*SIM*¹) & compositional similarity (*SIM*^c)
 - Classification accuracy: top-1 (ACC¹) & top-3 (ACC³)

	(a) Evaluation using CLIP $[49]$.									(b) Evaluation using DINO $[10]$.								
	D_1				D_2					D_1			D_2					
Method	SIM^{I}	SIM^{C}	ACC^1	ACC^3	SIM^{I}	$SIM^{\rm C}$	ACC^1	ACC^3	Method	SIM^{I}	SIM^{C}	ACC^1	ACC^3	SIM^{I}	$SIM^{\rm C}$	ACC^1	ACC^3	
BaS [2]	_	_	_	_	0.686	0.696	0.467	0.599	BaS [2]	_	_	_	_	0.316	0.474	0.559	0.704	
BaS f.t. [2]	_	_	_	_	0.693	0.789	0.526	0.697	BaS f.t. [2]	_	_	_	_	0.411	0.696	0.697	0.737	
$\operatorname{BaS}^{\dagger}$ [2]	0.627	0.773	0.174	0.282	$\overline{0}.\overline{6}1\overline{3}$	$\overline{0.653}$	$\overline{0.368}$	$\overline{0.487}$	$\operatorname{BaS}^{\dagger}$ [2]	0.254	0.510	$\overline{0.202}$	0.315	$\overline{0.231}$	0.417	$0.3\overline{29}$	$\overline{0.559}$	
Ours	0.689	0.784	0.263	0.385	0.715	0.737	0.566	0.783	Ours	0.319	0.568	0.324	0.470	0.371	0.535	0.803	0.934	

Text-prompted generation

Source image



 $[V_i]$

[Vi] in the jungle



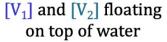
[V_i] with a sunset

[V₁] and [V₂] with a wheat field

[V₁] and [V₂] among skyscrapers

[V₁] and [V₂] in a movie theater

[V_i] in the snow



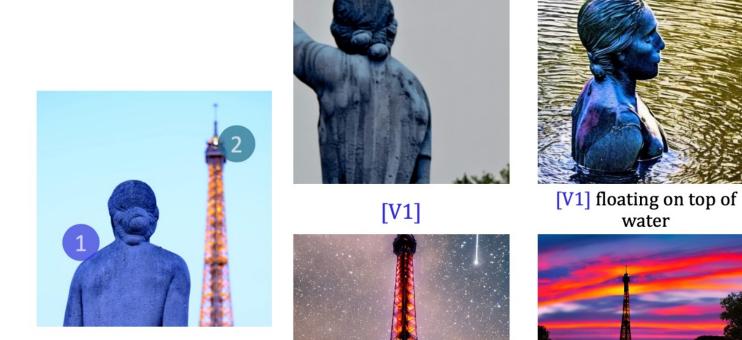
[V₁] and [V₂] on a cobblestone street

User Study



• 14 users; 7 source images; 19 concepts; 266 votes

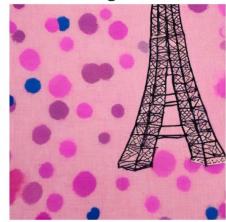
More results



[V2] with a beautiful

sunset

[V1] with a city in the background



[V2] on top of pink fabric

[V1] and [V2]

[V1] and [V2] with a wheat field in the background

[V2]

More results

[V1]

[V2]

[V1] floating on top of water

[V1] among the skyscrapers in New York city

[V1] and [V2]

[V2] in the snow

[V2] with a tree and autumn leaves in the background

[V1] and [V2] with a beautiful sunset

[V1] on top of a
dirt road[V1] and [V3] with a
beautiful sunset

[V1] and [V2] and [V3] in the snow

[V1] and [V2] and [V3] on a cobblestone street

[V1]

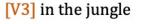
[V2]

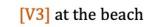
[V1] with sunflowers

around it

[V2] with the Eiffel Tower in the background

[V2] in the snow





[V2] and [V3] with a city in the background

[V1] and [V2] with a

mountain in the

background

Thank You for Listening!

Drop by for a chat at:

Session 6 #217 16:30-18:30

Scan QR code to try our model!