

Tackling StructuralHallucination in ImageTranslation with Local Diffusion

Seunghoi Kim*, Chen Jin*, Tom Diethe, Matteo Figini, Henry F. J. Tregidgo, Asher Mullokandov, Philip Teare, and Daniel C. Alexander

Introduction

Fig. 2 Illustration of data-shift problem

- Conditional diffusion models have attained state-of-the-art performances in various image translation tasks
- Senerative model f_{θ} learns joint distribution of train data and its condition
- Many applications with significant under-represented classes (e.g. rare diseases, defects) exist
- Performs well on in-distribution (IND) data, but what if the condition contains out-of-distribution (OOD) region?

 $Error(f_{\theta}(c_{ood\&ind}) \gg Error(f_{\theta}(c_{ind})) \text{ or at worst } hallucination!$

<u>02.</u>

Problem: Hallucination

Fig. 3 Visual examples of structural hallucination

- What is structural hallucination and why should we care?
 - Realistic-looking but inaccurately reconstructed features, leading to discrepancies with the actual structure
 - Misinterpretation => patient misdiagnosis, machine failure, increase in time and cost
 - Often insensitive using standard image quality metrics (e.g. MSE, SSIM)

Solution?

Simple way to fix => fine-tuning, but **expensive**

Kim et al.

Hypothesis & Verification

Can OOD-based Local Image Generation Help to Reduce Hallucination?

Fig. 5 A schematic diagram of local image generation based on OOD segmentation

Precise segmentation of OOD is crucial for hallucination mitigation!

Fig. 6 Visual illustration of the impact of shifting OOD boundary

Identifying Hallucination Hotspots in Diffusion Models

Fig. 7 Qualitative comparisons of predictions starting from different intermediate time points. We sample noisy GT (Flair) and perform a reverse process from it by conditioning the corresponding T1 image.

Less hallucination!

Methods: Local Diffusion

> OOD estimation: One-class classification anomaly detector (PatchCore [CVPR'22])
> Branching: Separate local image generation based on OOD probability map
> Fusion: Fuse the OOD/IND predictions for more cohesive image generation
> Classifier: Checks if the prediction at intermediate time step contains hallucination

Main Results (Quantitative)

		MN	IIST	Br	aTS	MVTec AD		
		$PSNR~(\uparrow)$	$SSIM~(\uparrow)$	$PSNR~(\uparrow)$	$SSIM (\uparrow)$	$PSNR (\uparrow)$	$SSIM~(\uparrow)$	
	DDPM [11]	$20.8 {\pm} 1.90$	$0.897 {\pm} 0.04$	$19.5 {\pm} 1.75$	$0.709 {\pm} 0.04$	$26.8 {\pm} 3.10$	$0.839 {\pm} 0.10$	
	DDIM $[32]$ (0.1 <i>T</i>)	$20.8 {\pm} 1.88$	$0.895 {\pm} 0.04$	$19.8 {\pm} 1.53$	$0.715 {\pm} 0.05$	$27.3 {\pm} 3.00$	$0.844 {\pm} 0.10$	
	DDIM [32] $(0.5T)$	20.6 ± 1.86	$0.899 {\pm} 0.04$	$19.7 {\pm} 1.61$	$0.703 {\pm} 0.04$	$27.1 {\pm} 2.98$	$0.840 {\pm} 0.10$	
	DDPM + DSI [38]	$20.8 {\pm} 1.90$	$0.898 {\pm} 0.04$	18.7 ± 1.74	$0.695 {\pm} 0.04$	26.6 ± 3.40	$0.815 {\pm} 0.10$	
	DDIM + Ours (0.1T)	$\textbf{20.9}{\pm}\textbf{1.87}$	$0.897 {\pm} 0.04$	$20.7 {\pm} 1.52$	$0.720{\pm}0.05$	$\textbf{27.5}{\pm}\textbf{3.02}$	$0.847{\pm}0.09$	
A	DDIM + Ours (0.5T)	$20.8 {\pm} 1.82$	$0.902{\pm}0.03$	$20.9 {\pm} 1.61$	$0.711 {\pm} 0.04$	$27.4 {\pm} 2.97$	$0.844 {\pm} 0.10$	
	DDPM + Ours	$\textbf{20.9}{\pm}\textbf{1.85}$	$0.900 {\pm} 0.04$	21.2 ± 1.74	$0.720{\pm}0.03$	$27.0 {\pm} 3.05$	$0.843 {\pm} 0.10$	
	p-value	0.014	0.016	≈ 0	0.02	0.001	0.004	

Downstream task performance is more important in our task to evaluate the level of hallucination!

Tab. 1 Quantitative comparisons of overall image quality across various datasets, where an upward arrow signifies that ahigher value is better. T represents the total number of time steps for sampling.

	MNIST	BraTS	MVTec AD
	Accuracy (%) (\uparrow)	Dice Coefficient (\uparrow)	Accuracy (%) (\uparrow)
DDPM [11]	$95.7 {\pm} 0.61$	$0.194{\pm}0.10$	$58.4{\pm}19.9$
DDIM $[32]$ (0.1T)	$95.8 {\pm} 0.61$	$0.256 {\pm} 0.11$	$53.9 {\pm} 19.5$
DDIM $[32]$ (0.5T)	$95.9 {\pm} 0.60$	$0.246 {\pm} 0.13$	$59.1 {\pm} 19.4$
DDPM + DSI [38]	$96.0 {\pm} 0.50$	$0.100 {\pm} 0.06$	$60.1 {\pm} 18.6$
DDIM + Ours (0.1T)	$) 96.1 \pm 0.30$	$0.447 {\pm} 0.10$	$66.8 {\pm} 17.8$
DDIM + Ours (0.5T)	$) 97.1 \pm 0.28$	$0.537 {\pm} 0.06$	83.2 ± 14.3
DDPM + Ours	$98.0{\pm}0.26$	$0.590{\pm}0.09$	$\textbf{85.0}{\pm}\textbf{13.2}$
Avg. gain	+1.5%	+0.293	+21.2%

Tab. 2 Quantitative results on downstream tasks to measure hallucination

Main Results (Qualitative)

Fig. 10 Qualitative comparison on MNIST, BraTS and MVTec (From top: predicted OOD map, DDPM, DDPM with ours and ground truth).

Further Analysis

Does Local Diffusion work on various OOD?

	-	Single Multiple DDPM Ours DDPM Ours				-	Small DDPM Ours		Large DDPM Ours		
	$\begin{array}{c} PSNR \ (\uparrow) \\ Dice \ coeff. \ (\uparrow) \end{array}$	$\begin{array}{c} 19.2 \\ 0.032 \end{array}$	$22.7 \\ 0.667$	$\begin{array}{c} 19.1 \\ 0.055 \end{array}$	$\begin{array}{c} 21.4 \\ 0.540 \end{array}$		$\begin{array}{c} PSNR \ (\uparrow) \\ Dice \ coeff. \ (\uparrow) \end{array}$	$\begin{array}{c} 20.7 \\ 0.050 \end{array}$	$\begin{array}{c} 23.4\\ 0.685\end{array}$	$\begin{array}{c} 18.0\\ 0.030\end{array}$	$\begin{array}{c} 21.5\\ 0.580 \end{array}$
(9	Model's perfo	rmance	on sind	de and	multipl	e (h) Model's perfo	rmance	on sm	all (/ 1	5%) a

Tab. 3 Quantitative comparisons on various types of OOD

(a) Model's performance on single and multiple OOD in a single image

(b) Model's performance on small (< 1.5%) and large OOD (> 3%) regions

Does Local Diffusion have negative impact on IND region?

Fig. 11 Comparative analysis of performance across individual OOD/IND regions, The red lines and green dots represent the median and mean of each box, respectively

Kim et al.

Thank you!

