

Tackling **Structural Hallucination** in Image Translation with Local Diffusion

Seunghoi Kim*, Chen Jin*, Tom Diethe, Matteo Figini, Henry F. J. Tregidgo, Asher Mullokandov, Philip Teare, and Daniel C. Alexander

Introduction

Fig. 2 Illustration of data-shift problem

- ➢ Conditional diffusion models have attained state-of-the-art performances in various image translation tasks
- \triangleright Generative model f_θ learns joint distribution of train data and its condition
- ➢ Many applications with significant under-represented classes (e.g. rare diseases, defects) exist
- ➢ Performs well on in-distribution (IND) data, but what if the condition contains out-of-distribution (OOD) region?

 $Error(f_{\theta}(c_{ood\&ind}) \gg Error(f_{\theta}(c_{ind}))$ or at worst *hallucination!*

02. Kim et al.

Problem: Hallucination

- ➢What is structural hallucination and why should we care?
	- Realistic-looking but inaccurately reconstructed features, leading to discrepancies with the actual structure
	- Misinterpretation => patient misdiagnosis, machine failure, increase in time and cost
	- Often **insensitive** using **standard image quality metrics** (e.g. MSE, SSIM)

Solution?

Fig. 3 Visual examples of structural hallucination

Simple way to fix => fine-tuning, but expensive

Hypothesis & Verification

Can OOD-based Local Image Generation Help to Reduce Hallucination?

Precise segmentation of OOD is crucial for hallucination mitigation!

Concat pred.

Fig. 6 Visual illustration of the impact of shifting OOD boundary

Identifying Hallucination Hotspots in Diffusion Models

Fig. 7 Qualitative comparisons of predictions starting from different intermediate time points. We sample noisy GT (Flair) and perform a reverse process from it by conditioning the corresponding T1 image.

Methods: Local Diffusion

➢**OOD estimation**: One-class classification anomaly detector (PatchCore [CVPR'22]) ➢**Branching**: Separate local image generation based on OOD probability map ➢**Fusion**: Fuse the OOD/IND predictions for more cohesive image generation ➢**Classifier**: Checks if the prediction at intermediate time step contains hallucination

Main Results (Quantitative)

Downstream task performance is more important in our task to evaluate the level of hallucination!

Tab. 1 Quantitative comparisons of overall image quality across various datasets, where an upward arrow signifies that a

higher value is better. T represents the total number of time steps for sampling.

Tab. 2 Quantitative results on downstream tasks to measure hallucination

- 1

₹

Main Results (Qualitative)

Fig. 10 Qualitative comparison on MNIST, BraTS and MVTec (From top: predicted OOD map, DDPM, DDPM with ours and ground truth).

Further Analysis

 \overrightarrow{OOD} in a single image

Does Local Diffusion work on various OOD?

 $(< 1.5\%)$ and (b) Model's performance on
large OOD ($>$ 3%) regions

Large

21.5

Tab. 3 Quantitative comparisons on various types of OOD

Does Local Diffusion have negative impact on IND region?

Fig. 11 Comparative analysis of performance across individual OOD/IND regions, The red lines and green dots represent the median and mean of each box, respectively

Kim et al.

Thank you!

