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Fig. 1 A schematic diagram of 

conditional diffusion model
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Introduction

Fig. 2 Illustration of data-shift problem

➢ Conditional diffusion models have attained state-of-the-art 
performances in various image translation tasks

➢Generative model 𝑓𝜃 learns joint distribution of train data 
and its condition

➢Many applications with significant under-represented classes 
(e.g. rare diseases, defects) exist

➢ Performs well on in-distribution (IND) data, but what if the 
condition contains out-of-distribution (OOD) region?

𝐸𝑟𝑟𝑜𝑟(𝑓𝜃(𝑐𝑜𝑜𝑑&𝑖𝑛𝑑) ≫ 𝐸𝑟𝑟𝑜𝑟(𝑓𝜃(𝑐𝑖𝑛𝑑)) or at worst 
hallucination!
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Problem: Hallucination

➢What is structural hallucination and why should we 
care?

▪ Realistic-looking but inaccurately reconstructed 
features, leading to discrepancies with the 
actual structure

▪ Misinterpretation => patient misdiagnosis, 
machine failure, increase in time and cost

▪ Often insensitive using standard image 
quality metrics (e.g. MSE, SSIM)

Solution?

➢Simple way to fix => fine-tuning, but expensive
Fig. 3 Visual examples of structural hallucination
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Hypothesis & Verification  

Fig. 4 Traditional conditional diffusion process vs. our OOD/IND Local Diffusion

Traditional approach 
leads to hallucination!
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Can OOD-based Local Image Generation Help to 

Reduce Hallucination? 

Fig. 5 A schematic diagram of local image 

generation based on OOD segmentation

Fig. 6 Visual illustration of the impact of shifting OOD boundary

Precise segmentation of 
OOD is crucial for 
hallucination mitigation!
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Identifying Hallucination Hotspots in Diffusion 

Models 

Less hallucination! 

Fig. 7 Qualitative comparisons of predictions starting from different 

intermediate time points. We sample noisy GT (Flair) and perform a reverse 

process from it by conditioning the corresponding T1 image. 

Fig. 8 Dice score of tumor segmentation and SSIM of

predicted images
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Methods: Local Diffusion

➢OOD estimation: One-class classification anomaly detector (PatchCore [CVPR’22])

➢Branching: Separate local image generation based on OOD probability map

➢Fusion: Fuse the OOD/IND predictions for more cohesive image generation

➢Classifier: Checks if the prediction at intermediate time step contains hallucination

Fig. 9 Schematic diagram of our 

proposed framework
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Main Results (Quantitative)

Downstream task performance is 

more important in our task to 

evaluate the level of hallucination!

+26%! 

Tab. 1 Quantitative comparisons of overall image quality across various datasets, where an upward arrow signifies that a 

higher value is better. T represents the total number of time steps for sampling.

Tab. 2 Quantitative results on downstream tasks to measure hallucination
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Main Results (Qualitative)

Fig. 10 Qualitative comparison on MNIST, BraTS and MVTec (From top: predicted OOD map, DDPM, DDPM with ours and ground truth). 
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Further Analysis

Does Local Diffusion work on various OOD?

Does Local Diffusion have negative impact on IND region?

Fig. 11 Comparative analysis of 

performance across individual 

OOD/IND regions, The red lines and 

green dots represent the median and 

mean of each box, respectively

Tab. 3 Quantitative 

comparisons on various 

types of OOD



Thank you!

Kim et al. 

Arxiv Github
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