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Aiming to generate detailed 3D scenes.
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3D Large Scene Generation
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(One-2-3-45: Shi et al 2024)

Existing methods focus on single objects or indoor scene generation.

(EchoScene: Zhai et al 2024)

Related Work and Limitations
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Existing methods cannot generate large 3D scenes with intricate details.

(CityDreamer: Xie et al 2024)

Related Work and Limitations
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Using conditional data may limit the model’s generalization ability.

(CityGen: Deng et al 2023)

Related Work and Limitations
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Method
Pyramid Diffusion with Scale Adaptive Function and Scene Subdivision
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Stage I – Generation 
Method

Discrete Diffusion Generation: Random Noise → Coarse Scene

32×32×4



Stage II – Scale Adaptive Function
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Upsampling by Scale Adaptive Function.

Method
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Stage II – Generation 
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Method

⨁

Fine scenes generation conditioned on upsampled scenes.

64×64×8

64×64×8



Stage II – Scale Adaptive Function
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Method
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Upsampling by Scale Adaptive Function.

64×64×8

64×64×8

256×256×16



Stage III – Generation 

⨁
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Fine sub-scenes generation conditioned on upsampled scenes.

Method

256×256×16

136×136×16



Stage III – Scene Subdivision and Merging
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Composition of sub-scenes → Final fine-grained scenes.

Method

136×136×16

256×256×16



6

Unconditional Generation
Qualitative Results
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Unconditional Generation

32×32×4 64×64×8 256×256×16

Our method can restore coarse scenes to finer scenes with high quality.

Qualitative Results
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Unconditional Generation
Qualitative Results
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Unconditional Generation
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Unconditional Generation

Discrete Diffusion
(Austin et al 2021)

Latent Diffusion
(Lee et al 2023)

Ours

Our method can generate richer and more realistic scenes.

Qualitative Results
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Conditional Generation
Qualitative Results
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Conditional Generation

Ground Truth (Austin et al 2021)
Condition: Point Cloud

Ours
Condition: Prev Coarse Structure

Conditions used by our method can restore scenes close to the ground truth.

Qualitative Results
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Our method does not simply memorize the scenes from the training set.

Scenes from Training Set Scenes generated by our method

Qualitative Results
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Cross-dataset Generation

Training

Finetuning

SemanticKITTI

CarlaSC
Generated Scene

Fine-tune the model trained on the synthetic
dataset using a small amount of real data.

Applications

BuildingBarrier OtherPedestrians PoleRoadGroundSidewalkVegetationVehicles
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Training

Finetuning

SemanticKITTI

CarlaSC
Generated Scene

Generated Scene
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Cross-dataset Generation

Ground Truth Ours
(trained on CarlaSC)

Ours
(fined-tuned on SemanticKITTI)

Fine-tuning with little data, our method gains better generative capabilities on real-world data.

Applications
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10

Infinite Scene Generation

Method Demo Video: Generated Infinite Scene

Using the Scene Sub-division module approach,
our method can generate infinite scenes.

Applications



Evaluation Metrices
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F3D

3D Generated Scenes 3D-CNN Encoder Embeddings

F3D Score

Semantic Segmentation MMD

Predicted Ground Truth

Gaussian Kernel

MMD Expression

Quantitative Evaluation

Distance features between generated 
and validation scenes.



Quantitative Evaluation
Evaluation Metrices
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Semantic Segmentation MMD

Predicted Ground Truth

Gaussian Kernel

MMD Expression

F3D

3D Generated Scenes 3D-CNN Encoder Embeddings

F3D Score

Distance features between generated 
and validation scenes.
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Generation Quality

Method Model Condition
Segmentation Metric Feature-based 

Metric

mIoU 
(V) MA (V) mIoU (P) MA (P) F3D (↓) MMD (↓)

Ground Truth - - 52.19 72.40 32.90 47.68 0.246 0.108

Unconditioned

DiscreteDiff - 40.05 63.65 25.54 38.71 1.361 0.599

LatentDiff - 38.01 62.39 26.69 45.87 0.331 0.221

P-DiscreteDiff (Ours) - 68.02 85.66 33.89 52.12 0.315 0.200

Conditioned

DiscreteDiff Point Cloud 38.55 59.97 28.41 44.06 0.357 0.261

DiscreteDiff Coarse scene (𝑠!) 52.52 77.23 27.93 43.13 0.359 0.284

P-DiscreteDiff (Ours) Coarse scene (𝑠!) 55.75 78.70 29.78 46.61 0.342 0.274

Our method outperforms other methods on most metrics.

Quantitative Evaluation
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• Generate high-quality scenes with decent
computational resources.

• Introduce metrics for evaluating the
quality of 3D scene generation.

• Showcase two applications: cross-dataset
learning and infinite scene generation.

Conclusion
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